Home
Class 12
MATHS
On the interval I=[-2,2], the function f...

On the interval `I=[-2,2]`, the function `f(x)={{:(,(x+1)e^(-((1)/(|x|)+(1)/(x))),x ne 0),(,0,x=0):}`

A

f(x) is continuous for all values of `x in I`

B

f(x) is continuous for `x in I - {0}`

C

f(x) assumes all intermediate values from f(-2) to f(2)

D

f(x) has a maximum value equal to 3/e

Text Solution

Verified by Experts

The correct Answer is:
B, C, D
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise EXERCISE 4|3 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|50 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS|Exercise Complex Number Exercise 8|3 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If f(x) = {{:((1)/(e^(1//x))",",x ne 0),(0",",x = 0):} then

Examine the function f(X) = {:{((1-cos3x)/(x), x ne 0),(0,x=0):} for continuity at x = 0

Discuss the continuity of the function f(x) at x = 0 , where f(x) ={:{(( |x|/x) , x ne 0),(0,x=0):}

Examine for continuity, each of the following functions: f(x) = {:{((x-a) sin (1/(x-a)), x ne a), (0, x = a):} at x = a

Examine for continuity, the function 'f' defined by f(x) = {:{(e^(1//x), x ne 0),(0,x=0):} at x = 0

Examine for continuity and differentiability, each of the following functions: f(x) = {:{(x^2 sin (1/x), x ne 0),(0, x =0):} at x = 0

Examine the continuity of the function 'f' at x = 0, if f(x) ={(x^2sin(1/x)),(0):}, ((x ne 0),(x = 0))

Examine for continuity the function : f(x) = {:{(sin^-1 |x|, x ne 0), (0, x = 0):} at x = 0

Examine the continuity of the function f(x) at x = 0, f(x) = {:{(|sinx|/x, when x ne 0),(1, when x=0):}

ARIHANT MATHS-CONTINUITY AND DIFFERENTIABILITY-Exercise (More Than One Correct Option Type Questions)
  1. Function whose jump (non-negative difference of LHL and RHL) of discon...

    Text Solution

    |

  2. Indicate all correct alternatives: if f(x) = x/2-1, then on the interv...

    Text Solution

    |

  3. On the interval I=[-2,2], the function f(x)={{:(,(x+1)e^(-((1)/(|x|)+(...

    Text Solution

    |

  4. Given f(x)={{:(3-[cot^(-1)((2x^3-3)/(x^2))], x >0) ,({x^2}cos(e^(1...

    Text Solution

    |

  5. If f(x) = {{:(b([x]^(2)+[x])+1",","for",x gt -1),(sin(pi(x + a))",","f...

    Text Solution

    |

  6. Find dy/dx if y= x/tanx

    Text Solution

    |

  7. If f(x) = |x+1|(|x|+|x-1|), then at what point(s) is the function not ...

    Text Solution

    |

  8. Let [x] be the greatest integer function f(x)=(sin(1/4(pi[x]))/([x])) ...

    Text Solution

    |

  9. If f(x) = {{:((sin^(-1)x)^(2)cos((1)/(x))",",x ne 0),(0",",x = 0):} th...

    Text Solution

    |

  10. f(x) = cos x and H(x) = {{:(min{f(t), 0 le t lt x},0 le x le (pi)/(2))...

    Text Solution

    |

  11. If f(x) = 3(2x + 3)^(2//3) + 2x + 3, then: (a) f(x) is continuous but ...

    Text Solution

    |

  12. If f(x) ={{:(-x=(pi)/(2),xle -(pi)/(2)), (- cos x, -(pi)/(2)lt x ,le ...

    Text Solution

    |

  13. if f(x) ={{:( (x log cos x)/( log( 1+x^(2) )), x ne 0) ,( 0, x=0):} ...

    Text Solution

    |

  14. Let [x] denote the greatest integer less that or equal to x. If f(x) =...

    Text Solution

    |

  15. The function f(x)=x-[x] , where [⋅] denotes the greatest integer fu...

    Text Solution

    |

  16. The function f(x)=sqrt(1-sqrt(1-x^2)) a. has its domain -1 le x le 1 ...

    Text Solution

    |

  17. Consider the function f(x) = |x^(3) + 1|. Then,

    Text Solution

    |

  18. f is a continuous function in [a,b]; g is a continuous function in [b,...

    Text Solution

    |

  19. Which of the following function(s) has/have the same range ?

    Text Solution

    |

  20. If f(x) = sec 2x + cosec 2x, then f(x) is discontinuous at all points ...

    Text Solution

    |