Home
Class 12
MATHS
int(0)^(pi/6) sin2x . cosx dx...

`int_(0)^(pi/6) sin2x . cosx dx `

Text Solution

Verified by Experts

The correct Answer is:
`(2)/(3)-(sqrt3)/(4)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 2|14 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 3|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|37 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Show that (i) int_(0)^(pi//2)f(sinx) d x=int_(0)^(pi//2)f(cos x) d x (ii) int_(0)^(pi//2)f(tan x) d x=int_(0)^(pi//2)f(cot x) d x (iii) int_(0)^(pi//2)f(sin 2 x) sin xd x = int_(o)^(pi//2)f(sin 2x).cosx d x

Evaluate int_(0)^(pi)( sin 2x ) dx .

Prove that int_(0)^(pi//2) (sin x -cos x)/(1+sin x cos x)dx = 0 .

Show that (a) int_(0)^(pi/2) sin x dx=1 (b) int_(0)^(pi) cosx dx=0

Let l= int_(0)^(pi//2)(cosx)/(a cos x+ b sinx)dx and J=int_(0)^(pi//2)(sin x)/(a cosx+b sin x )dx , where a gt 0 and b gt 0 Compute the values of l and j