Home
Class 12
MATHS
int(0)^(pi) cos 2x . Log (sinx) dx...

`int_(0)^(pi) cos 2x . Log (sinx) dx`

Text Solution

Verified by Experts

The correct Answer is:
`(-pi)/(2)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 2|14 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 3|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|37 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//4) cos^(2) x dx

Evaluate : int_(0)^(2pi) cos^(5)x dx .

Evaluate : int_0^(pi/2) (2 log cos x-log sin 2x)dx .

Show that : int_(0)^(pi)x/(1+sinx)dx=pi

Evaluate int_(0)^(pi//2)(sinx)/(sinx)dx

int (cotx)/(log(sinx)) dx

Prove that int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2 .

If|a|lt 1, show that int _(0)^(pi)(log(1+a cos x ))/( cos x)dx =pi sin^(-1) a