Home
Class 12
MATHS
Let f(x)=int1^xsqrt(2-t^2)dt Then the re...

Let `f(x)=int_1^xsqrt(2-t^2)dt` Then the real roots of the equation `x^2-f^(prime)(x)=0` are

A

`pm 1`

B

`pm(1)/(sqrt2)`

C

`pm(1)/(2)`

D

`pmsqrt2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 6|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|34 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 4|20 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval

The function f(x)= int_0^x sqrt(1-t^4)dt is such that:

Let f(x)=x^(2) +ax + b and the only solution of the equation f(x)= min(f(x)) is x =0 and f(x) =0 "has root " alpha and beta, "then" int _(alpha )^(beta)x^(3) dx is equal to

Let f(x)=int_2^x (dt)/sqrt(1+t^4) and g be the inverse of f . Then, the value of g'(0) is

Let f(x)=x^(3)+ax^(2)+bx+c be the given cubic polynomial and f(x)=0 be the corresponding cubic equation, where a, b, c in R. Now, f'(x)=3x^(2)+2ax+b Let D=4a^(2)-12b=4(a^(2)-3b) be the discriminant of the equation f'(x)=0 . If D=4(a^(2)-3b)gt0 and f(x_(1)).f(x_(2)) lt0" where " x_(1),x_(2) are the roots of f(x), then a. f(x) has all real and distinct roots b. f(x) has three real roots but one of the roots would be repeated c. f(x) would have just one real root d. None of the above

Let f(x)=x^(3)+ax^(2)+bx+c be the given cubic polynomial and f(x)=0 be the corresponding cubic equation, where a, b, c in R. Now, f'(x)=3x^(2)+2ax+b Let D=4a^(2)-12b=4(a^(2)-3b) be the discriminant of the equation f'(x)=0 . IF D=4(a^(2)-3b)lt0 . Then, a. f(x) has all real roots b. f(x) has one real and two imaginary roots c. f(x) has repeated roots d. None of the above

Let f_(1) (x) and f_(2) (x) be twice differentiable functions where F(x)= f_(1) (x) + f_(2) (x) and G(x) = f_(1)(x) - f_(2)(x), AA x in R, f_(1) (0) = 2 and f_(2)(0)=1. "If" f'_(1)(x) = f_(2) (x) and f'_(2) (x) = f_(1) (x) , AA x in R then the number of solutions of the equation (F(x))^(2) =(9x^(4))/(G(x)) is...... .

Iff(x)=e^(g(x))a n dg(x)=int_2^x(tdt)/(1+t^4), then find the value of f^(prime)(2)

Let f(x)=x^(3)+ax^(2)+bx+c be the given cubic polynomial and f(x)=0 be the corresponding cubic equation, where a, b, c in R. Now, f'(x)=3x^(2)+2ax+b Let D=4a^(2)-12b=4(a^(2)-3b) be the discriminant of the equation f'(x)=0 . If D=4(a^(2)-3b)gt0 and f(x_(1)).f(x_(2))=0" where " x_(1),x_(2) are the roots of f(x) , then

Let f(x)=x^(3)+ax^(2)+bx+c be the given cubic polynomial and f(x)=0 be the corresponding cubic equation, where a, b, c in R. Now, f'(x)=3x^(2)+2ax+b Let D=4a^(2)-12b=4(a^(2)-3b) be the discriminant of the equation f'(x)=0 . If D=4(a^(2)-3b)gt0 and f(x_(1)).f(x_(2))gt0 where x_(1),x_(2) are the roots of f(x), then

ARIHANT MATHS-DEFINITE INTEGRAL-Exercise For Session 5
  1. The value of int-1^10 sgn (x -[x])dx is equal to (where, [:] denotes t...

    Text Solution

    |

  2. the value of int(0)^([x]) dx (where , [.] denotes the greatest integer...

    Text Solution

    |

  3. Evaluate: int(-pi/4)^(npi-pi/4)|sinx+cosx|dx

    Text Solution

    |

  4. Let f(x)=x-[x], for ever real number x ,w h e r e[x] is the g...

    Text Solution

    |

  5. If int0^x f(t) dt=x+intx^1 tf(t)dt, then the value of f(1) is

    Text Solution

    |

  6. The least value of the function phi(x)=overset(x)underset(5pi//4)int...

    Text Solution

    |

  7. The poins of extremum of phi(x)=underset(1)overset(x)inte^(-t^(2)//2)...

    Text Solution

    |

  8. If f(x) is periodic function with period, T, then

    Text Solution

    |

  9. Let (d)/(dx)(F(x))=e^(sinx)/(x) ,xgt0. If int (1)^(4)(2e^(sinx2))/(x)d...

    Text Solution

    |

  10. Let f:(0,oo)to R and F(x)=int(0)^(x) f(t)dt. " If " F(x^(2))=x^(2)(1+x...

    Text Solution

    |

  11. Let T >0 be a fixed real number. Suppose f is continuous function such...

    Text Solution

    |

  12. Let f(x)=int1^xsqrt(2-t^2)dt Then the real roots of the equation x^2-f...

    Text Solution

    |

  13. The points of extremum of phi (x)=int(1)^(x)e^(-t^(2//2)) (1-t^(2)) dt...

    Text Solution

    |

  14. Let f:[2, infty) to R be the function defined by f(x)=x^(2)-4x+5, then...

    Text Solution

    |

  15. The value of lim(x rarr0)(2int(0)^(cos x ) cos^(-1) (t))/(2x- sin 2 x)...

    Text Solution

    |

  16. If underset(0)overset(x)int (bt cos 4 t - a sin 4t)/( t^(2))dt=(a sin ...

    Text Solution

    |

  17. If f(x)=int0^x{f(t)}^(- 1)dt and int0^1{f(t)}^(- 1)=sqrt(2), then

    Text Solution

    |

  18. Let f be a real-valued function defined on the inverval (-1,1) such th...

    Text Solution

    |

  19. Consider the function defined on [0,1] rarr R , f(x) =(sinx- xcosx)/(x...

    Text Solution

    |

  20. Evaluate int (0)^(2) x^3 dx

    Text Solution

    |