Home
Class 12
MATHS
lf (1 +x)^(10) = a0 +a1x + a2x^2++a(10)x...

lf `(1 +x)^(10) = a_0 +a_1x + a_2x^2++a_(10)x^(10)`, then value of `(a_0-a_2+a_4-a_6+a_8-a_(10))^2+(a_1-a_3+a_5-a_7+a_9)^2` is

A

`2^(9)`

B

`3^(9)`

C

`2^(10)`

D

`3^(10)`

Text Solution

Verified by Experts

The correct Answer is:
c
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise Exercise For Session 3|10 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

If (1+2x+3x^2)^(10)=a_0+a_1x+a_2x^2++a_(20)x^(20),t h e na_1 equals

If (1 + x+ 2x^(2))^(20) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(40) x^(40) . The value of a_(0) + a_(2) + a_(4) + …+ a_(38) is

If (1 - x + x^2)^n = a_0 + a_1 x + a_2x^2 + ..... + a_(2n)x^(2n) then a_0 + a_2 + a_4 + ... + a_(2n) equals

lf (1 + x + x^2 + x^3)^5 = a_0+a_1x +a_2x^2+.....+a_(15)x^15 , then a_(10) equals to

if f(x) = (x - a_1) (x - a_2) .....(x - a_n) then find the value of lim_(x to a_1) f(x)

If (1+ax+bx^(2))^(4)=a_(0) +a_(1)x+a_(2)x^(2)+…..+a_(8)x^(8), where a,b,a_(0) ,a_(1)…….,a_(8) in R such that a_(0)+a_(1) +a_(2) ne 0 and |{:(a_(0),,a_(1),,a_(2)),(a_(1),,a_(2),,a_(0)),(a_(2),,a_(0),,a_(1)):}|=0 then the value of 5.(a)/(b) " is " "____"

If (1+x-3x^2)^2145 = a_0+a_1 x+a_2 x^2+... then a_0-a_1+a_2-.. ends with

Let (1 + x^(2))^(2) (1 + x)^(n) = a_(0) + a_(1) x + a_(2) x^(2) + … if a_(0),a_(1) " and " a_(2) are in A.P , the value of n is

If the function f(x) is defined as : f(x) =a_(0) +a_(1)x^(2)+…..+ a_(10)x^(20) where 0 lt a_(0) lt …. < a_(10) . Then f(x) has in RR :

If the equation of the locus of a point equidistant from the points (a_1, b_1) and (a_2, b_2) is (a_1-a_2)x+(b_1-b_2)y+c=0 , then the value of c is a a2-a2 2+b1 2-b2 2 sqrt(a1 2+b1 2-a2 2-b2 2) 1/2(a1 2+a2 2+b1 2+b2 2) 1/2(a2 2+b2 2-a1 2-b1 2)