Home
Class 12
MATHS
If f(n) = sum(i=0)^(n)(("30"),("30-i"))...

If ` f(n) = sum_(i=0)^(n)(("30"),("30-i"))(("20"),("30-i"))`, then

Text Solution

Verified by Experts

The correct Answer is:
a,b,d

We have ,
`f(n) = sum_(i=0)^(n) ((30),(30-i))((20),(n-i)) = sum_(i=0)^(n) ((30)/(i)) ((20)/(n-i)) = ""^(50)C_(n)`
` therefore ` f(n) is greatest , when n = 25
` therefore ` Maximum value of f(n) is ` ""^(50)C_(25)` .
Also , ` f(0) + f(1) +...+ f(50) `
` = ""^(50)C_(0) + ""^(50)C_(1) + ""^(50)C_(2) + ...+ ""^(50)C_(50) = 2^(50)`
Also , ` ""^(50)C_(n)` is not divisible by 50 for any n as 50 is not a prime number .
` sum_(i=0)^(n) (f(n))^(2) = (""^(50)C_(0))^(2) + (""^(50)C_(1))^(2) + ...+ (""^(50)C_(50))^(2) = ""^(100)C_(50)`
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|21 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise Binomial Theorem Exerciese 4 : Single Integer Answer Type Questions|1 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

If (x + a_(1)) (x + a_(2)) (x + a_(3)) …(x + a_(n)) = x^(n) + S_(1) x^(n-1) + S_(2) x^(n-2) + …+ S_(n) where , S_(1) = sum_(i=0)^(n) a_(i), S_(2) = (sumsum)_(1lei lt j le n) a_(i) a_(j) , S_(3) (sumsumsum)_(1le i ltk le n)a_(i) a_(j) a_(k) and so on . Coefficient of x^(7) in the expansion of (1 + x)^(2) (3 + x)^(3) (5 + x)^(4) is

Let S = sum _(r=1)^(30) (""^(30+r)C_(r) (2r-1))/(""^(30)C_(r)(30+r)),K=sum_(r=0)^(30) (""^(30)C_(r))^(2) and G=sum_(r=0)^(60) (-1)^(r)(""^(60)C_(r) )^(2) The value fo (G-S)is

Let S = sum _(r=1)^(30) (""^(30+r)C_(r) (2r-1))/(""^(30)C_(r)(30+r)),K=sum_(r=0)^(30) (""^(30)C_(r))^(2) and G=sum_(r=0)^(60) (-1)^(r)(""^(60)C_(r) )^(2) The value (SK_SG) is

Let S = sum _(r=1)^(30) (""^(30+r)C_(r) (2r-1))/(""^(30)C_(r)(30+r)),K=sum_(r=0)^(30) (""^(30)C_(r))^(2) and G=sum_(r=0)^(60) (-1)^(r)(""^(60)C_(r) )^(2) The value of K + G is

Evaluate sum_(i=0)^(n)sum_(j=0)^(n) ""^(n)C_(j) *""^(j)C_(i), ile j .

Evaluate sum_(i=0)^(n)sum_(j=0)^(n) ""^(n)C_(j) *""^(j)C_(i), ile j .

The value of {:((30), (0))((30), (10))-((30), (1))((30),( 11)) +((30), (2))((30), (12))+....+((30), (20))((30), (30)):}

If A_(i)= [(2^(-i),3^(-i)),(3^(-i),2^(-i))],then sum_(i=1)^(oo) det (A_(i)) is equal to

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +…+ C_(n) x^(n) , find the values of the following . sum_(i=0)^(n) sum_(j=0)^(n) (i+j) C_(i) C_(j)

Sum of four consecutive powers of i(iota) is zero. i.e., i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I. If sum_(n=1)^(25)i^(n!)=a+ib, " where " i=sqrt(-1) , then a-b, is