Home
Class 12
MATHS
Find the value (s) of r satisfying the e...

Find the value (s) of `r` satisfying the equation `^69 C_(3r-1)-^(69)C_(r^2)=^(69)C_(r^2-1)-^(69)C_(3r)dot`

A

1

B

2

C

3

D

7

Text Solution

Verified by Experts

The correct Answer is:
c,d

`""^(69)C_(3r) + ""^(69)C_(3r) = ""^(69)C_(r^(2)-1) + ""^(69)C_(r^(2))`
` rArr ""^(70)C_(3r) = ""^(70)C_(r^(2))`
` rArr r^(2) = 3r or 70 - 3r = r^(3)`
`rArr r = 0 , 3 or r^(3( + 3r - 70 = 0 `
` rArr r = 0 , 3 or (r + 10 ) (r - 7) = 0 `
` rArr r = 0, 3, 7, - 10 `
But r = 0 , - 10 do not satisfiles the given equation .
Hence , two values of r satisfies ,
i.e. r = 3,7
Promotional Banner

Topper's Solved these Questions

  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|21 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise Binomial Theorem Exerciese 4 : Single Integer Answer Type Questions|1 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • AREA OF BOUNDED REGIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|23 Videos
  • CIRCLE

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos

Similar Questions

Explore conceptually related problems

The number of values of 'r' satisfying the equation ""^(39)C_(3r-1)- ""^(39)C_(r^(2) )= ""^(39)C_(r^(2)-1) - ""^(39)C_(3r) is

Prove that "^nC_r+2 ^(n)C_(r-1)+ ^(n)C_(r-2) = ^(n+2)C_r .

If .^(15)C_(3r)=.^(15)C_(r+3), find .^(r)C_(2) .

the value of overset(n)underset(r=2)(Simga)(-2)^(r ) |{:( .^(n-2)C_(r-2),,.^(n-2)C_(r-1),,.^(n-2)C_(r)),(-3,,1 ,,1),(2,,-1,,0):}| (n gt 2)

If 10C_r=^10C_2 find the values of r.

If C_(0), C_(1), C_(2),…, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)(r+1)(C_(r))

If m,n,r are positive integers such that r lt m,n, then ""^(m)C_(r)+""^(m)C_(r-1)""^(n)C_(1)+""^(m)C_(r-2)""^(n)C_(2)+...+ ""^(m)C_(1)""^(n)C_(r-1)+""^(n)C_(r) equals

Find the sum of sum_(r=1)^n(r^n C_r)/(^n C_(r-1) .

If C_(0) , C_(1), C_(2), …, C_(n) are the binomial coefficients in the expansion of (1 + x)^(n) , prove that (C_(0) + 2C_(1) + C_(2) )(C_(1) + 2C_(2) + C_(3))…(C_(n-1) + 2C_(n) + C_(n+1)) ((n-2)^(n))/((n+1)!) prod _(r=1)^(n) (C_(r-1) + C_(r)) .