Home
Class 12
MATHS
Show that the line xcosalpha+y sinalpha+...

Show that the line `xcosalpha+y sinalpha+p` touches the ellipse `x^(2)/a^(2)+y^(2)/b^(2)=1` if `a^(2)cos^(2)alpha=b^(2)sin^(2)alpha=p^(2)` and the point of contact is `(a^(2)cosalpha/p),(b^(2)sinalpha/p)`.

Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    ARIHANT MATHS|Exercise Example|7 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise JEE Type Solved Examples : Matching Type Questions|1 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)-(y^2)/(b^2)=1, then prove that a^2cos^2alpha-b^2sin^2alpha=p^2dot

The line x cos alpha + y sin alpha = p is tangent to the ellipse (x^(2))/(a^(2)) +(y^(2))/(b^(2)) = 1 if :

Show that xcosalpha+asin^2alpha=p touches the parabola y^2=4a x if pcosalpha+asin^2alpha=0 and that the point of contact is (atan^2alpha,-2atanalpha)dot

If x/a+y/b=sqrt(2) touches the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 , then find the eccentric angle theta of point of contact.

Find the condition that the line x cos alpha+y sin alpha=p may touch the curve ((x)/(a))^(m)+((y)/(b))^(m)=1

Show that the tangents at the ends of conjugate diameters of the ellipse x^(2)/a^(2)+y^(2)/b^(2)=1 intersect on the ellipse x^(2)/a^(2)+y^(2)/b^(2)=2 .

Find the condition that the line x cos alpha + y sin alpha = p may be a tangent to the curve (x^2)/(a^2) + (y^2)/(b^2) = 1