Home
Class 12
MATHS
Prove that the straight line lx+my+n=0 i...

Prove that the straight line `lx+my+n=0` is a normal to the ellipse `x^(2)/a^(2)+y^(2)/b^(2)=1` if `a^(2)/l^(2)+b^(2)/m^(2)=(a^(2)-b^(2))^(2)/n^(2)`.

Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    ARIHANT MATHS|Exercise Example|7 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise JEE Type Solved Examples : Matching Type Questions|1 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

The line lx+my=n is a normal to the ellipse x^(2)/a^(2)+y^(2)/b^(2)=1

The line l x+m y+n=0 is a normal to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 . then prove that (a^2)/(l^2)+(b^2)/(m^2)=((a^2-b^2)^2)/(n^2)

If straight line lx + my + n=0 is a tangent of the ellipse x^2/a^2+y^2/b^2 = 1, then prove that a^2 l^2+ b^2 m^2 = n^2.

Area of ellipse x^2/a^2 + y^2/b^2 = 1, a > b is :

The line x cos alpha + y sin alpha = p is tangent to the ellipse (x^(2))/(a^(2)) +(y^(2))/(b^(2)) = 1 if :

Find the area of enclosed by the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 .

If the line lx+my+n=0 touches the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 . Then show a^2 l^2 - b^2 m^2 =n^2

Prove that the line lx+my+n=0 toches the circle (x-a)^(2)+(y-b)^(2)=r^(2) if (al+bm+n)^(2)=r^(2)(l^(2)+m^(2))

Show that the tangents at the ends of conjugate diameters of the ellipse x^(2)/a^(2)+y^(2)/b^(2)=1 intersect on the ellipse x^(2)/a^(2)+y^(2)/b^(2)=2 .