Home
Class 12
MATHS
If the line 2x+sqrt(6)y=2 touches the hy...

If the line `2x+sqrt(6)y=2` touches the hyperbola `x^2-2y^2=4` , then the point of contact is `(-2,sqrt(6))` (b) `(-5,2sqrt(6))` `(1/2,1/(sqrt(6)))` (d) `(4,-sqrt(6))`

A

`(-2, sqrt(6))`

B

`(-5, 2sqrt(6))`

C

`((1)/(2), (1)/(sqrt(6))`

D

`(4, -sqrt(6))`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise For Session 3|17 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise For Session 1|19 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

If the line 3 x +4y =sqrt7 touches the ellipse 3x^2 +4y^2 = 1, then the point of contact is

The straight line x+y=sqrt2P will touch the hyperbola 4x^2-9y^2=36 if

int x^2/sqrt(1-x^6)dx

Tangents are drawn to the hyperbola x^2/9-y^2/4=1 parallet to the sraight line 2x-y=1. The points of contact of the tangents on the hyperbola are (A) (9/(2sqrt2),1/sqrt2) (B) (-9/(2sqrt2),-1/sqrt2) (C) (3sqrt3,-2sqrt2) (D) (-3sqrt3,2sqrt2)

If the maximum distance of any point on the ellipse x^2+2y^2+2x y=1 from its center is r , then r is equal to 3+sqrt(3) (b) 2+sqrt(2) (sqrt(2))/(sqrt(3-sqrt(5))) (d) sqrt(2-sqrt(2))

The eccentricity of the conjugate hyperbola of the hyperbola x^2-3y^2=1 is (a) 2 (b) 2sqrt(3) (c) 4 (d) 4/5

The values of parameter a for which the point of minimum of the function f(x)=1+a^2x-x^3 satisfies the inequality (x^2+x+2)/(x^2+5x+6)<0a r e (a) (2sqrt(3),3sqrt(3)) (b) -3sqrt(3),-2sqrt(3)) (c) (-2sqrt(3),3sqrt(3)) (d) (-2sqrt(2),2sqrt(3))

Show that cot (142\ 1/2) ^@ = sqrt(2) + sqrt(3) - 2 - sqrt(6)

If the values of m for which the line y=mx+2sqrt(5) touches the hyperbola 16x^(2)-9y^(2)=144 are the roots of the equation x^(2)-(a+b)x-4=0 , then the value of a+b is

Integrate the functions: x^2/sqrt(x^6+a^6)