Home
Class 12
MATHS
P is a point on the hyperbola (x^(2))/(a...

P is a point on the hyperbola `(x^(2))/(a^(2))-(y^(2))/(b^(2))=1`, and N is the foot of the perpendicular from P on the transverse axis. The tantent to the hyperbola at P meets the transverse axis at T. If O is the centre of the hyperbola, then OT.ON is equal to

A

`a^(2)`

B

`b^(2)`

C

`e^(2)`

D

`b^(2)la

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise For Session 3|17 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise For Session 1|19 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

For the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , let n be the number of points on the plane through which perpendicular tangents are drawn.

Let P(6, 3) be a point on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1. If the normal at point P intersects the x-axis at (9, 0), then find the eccentricity of the hyperbola.

If e is the eccentricity of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 and theta is the angle between the asymptotes, then cos.(theta)/(2) is equal to

The locus of the poles of the chords of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 which subtend a right angle at its centre is

The tangent at the point P of a rectangular hyperbola meets the asymptotes at L and M and C is the centre of the hyperbola. Prove that PL=PM=PC .

The ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 and the hyperbola (x^(2))/(A^(2))-(y^(2))/(B^(2))=1 are given to be confocal and length of mirror axis of the ellipse is same as the conjugate axis of the hyperbola. If e_1 and e_2 represents the eccentricities of ellipse and hyperbola respectively, then the value of e_(1)^(-2)+e_(1)^(-2) is

For the hyperbola (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 , the normal at point P meets the transverse axis AA' in G and the connjugate axis BB' in g and CF be perpendicular to the normal from the centre. Q. The value PF*Pg is equal to

P is any point on the hyperbola x^(2)-y^(2)=a^(2) . If F_1 and F_2 are the foci of the hyperbola and PF_1*PF_2=lambda(OP)^(2) . Where O is the origin, then lambda is equal to

Two mutually perpendicular tangents of the parabola y^(2)=4ax meet the axis at P_(1)andP_(2) . If S is the focal of the parabola, Then (1)/(SP_(1))+(1)/(SP_(2)) is equal to

For the hyperbola (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 , the normal at point P meets the transverse axis AA' in G and the connjugate axis BB' in g and CF be perpendicular to the normal from the centre. Q. The value (PF*PG)/((CB^(2))) is equal to