Home
Class 12
MATHS
Statement-I A hyperbola and its conjugat...

Statement-I A hyperbola and its conjugate hyperbola have the same asymptotes.
Statement-II The difference between the second degree curve and pair of asymptotes is constant.

A

Statement-I is true, Statement-II is also true, Statement-II is the correct explanation of Statement-I.

B

Statement-I is true, Statement-II is also true, Statement-II is not the correct explanation of Statement-I.

C

Statement-I is true, Statement-II is false.

D

Statement-I is false, Statement-II is true

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|7 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Hyperbola Exercise 10 : Subjective Type Questions|4 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Hyperbola Exercise 8 : Matching Type Questions|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Statement-I If eccentricity of a hyperbola is 2, then eccentricity of its conjugate hyperbola is (2)/(sqrt(3)) . Statement-II if e and e_1 are the eccentricities of two conjugate hyperbolas, then ee_1gt1 .

To find the equation of the hyperbola from the definition that hyperbola is the locus of a point which moves such that the difference of its distances from two fixed points is constant with the fixed point as foci

Show that the tangent at any point of a hyperbola cuts off a triangle of constant area from the asymptotes and that the portion of it intercepted between the asymptotes is bisected at the point of contact.

Statement-I A hyperbola whose asymptotes include (pi)/(3) is said to be equilateral hyperbola. Statement-II The eccentricity of an equilateral hyperbola is sqrt(2).

Statement-I (5)/(3) and (5)/(4) are the eccentricities of two conjugate hyperbolas. Statement-II If e_1 and e_2 are the eccentricities of two conjugate hyperbolas, then e_1e_2gt1 .

Statement I The equation |(x-2)+a|=4 can have four distinct real solutions for x if a belongs to the interval (-oo, 4) . Statemment II The number of point of intersection of the curve represent the solution of the equation. (a)Both Statement I and Statement II are correct and Statement II is the correct explanation of Statement I (b)Both Statement I and Statement II are correct but Statement II is not the correct explanation of Statement I (c)Statement I is correct but Statement II is incorrect (d)Statement II is correct but Statement I is incorrect

Let P(theta_1) and Q(theta_2) are the extremities of any focal chord of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 whose eccentricity is e. Let theta be the angle between its asymptotes. Tangents are drawn to the hyperbola at some arbitrary points R. These tangent meet the coordinate axes at the points A and B respectively. The rectangle OABC (O being the origin) is completedm, then Q.Locus of point C is

Statement I The order of differential equation of all conics whose centre lies at origin is , 2. Statement II The order of differential equation is same as number of arbitary unknowns in the given curve.

Let P(theta_1) and Q(theta_2) are the extremities of any focal chord of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 whose eccentricity is e. Let theta be the angle between its asymptotes. Tangents are drawn to the hyperbola at some arbitrary points R. These tangent meet the coordinate axes at the points A and B respectively. The rectangle OABC (O being the origin) is completedm, then Q. If cos^(2)((theta_1+theta_2)/(2))=lambdacos^(2)((theta_1-theta_2)/(2)) , then lambda is equal to

Statement I : If centroid and circumcentre of a triangle are known its orthocentre can be found Statement II : Centroid, orthocentre and circumcentre of a triangle are collinear.