Home
Class 12
MATHS
If A = [(costheta,-sintheta,0),(sintheta...

If A = `[(costheta,-sintheta,0),(sintheta,costheta,0),(0,0,1)]` verify that A(adj A) =1

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    BETTER CHOICE PUBLICATION|Exercise ASSIGNMENT (MOST IMPORTANT QUESTIONS FOR PRACTICE) (SECTION V) (LONG ANSWER TYPE QUESTION)|12 Videos
  • DETERMINANTS

    BETTER CHOICE PUBLICATION|Exercise ASSIGNMENT (PREVIOUS YEAR.S BOARD QUESTIONS FOR PRACTICE) (MULTIPLE CHOICE QUESTION)|13 Videos
  • DETERMINANTS

    BETTER CHOICE PUBLICATION|Exercise ASSIGNMENT (MOST IMPORTANT QUESTIONS FOR PRACTICE) (SECTION IV) |7 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    BETTER CHOICE PUBLICATION|Exercise PREVIOUS YEARS BOARDS QUESTIONS FOR PRACTICE (MULTIPLE CHOICE QUESTIONS)|94 Videos
  • DIFFERENTIAL EQUATIONS

    BETTER CHOICE PUBLICATION|Exercise PREVIOUS YEARS BOARD.S QUESTIONS FOR PRACTICE|50 Videos

Similar Questions

Explore conceptually related problems

Evaluate |(2costheta,-2sintheta),(sintheta,costheta)|

For the matrix A = [(cos alpha, -sinalpha, 0),(sinalpha, cosalpha, 0),(0,0,1)] , verify that A (adj A) = |A| I.

If F(theta) = [(cos theta, - sin theta, 0),(sintheta, costheta, 0),(0,0,1)] and G(alpha) = [(cos alpha, 0, sin alpha),(0,1,0),(-sinalpha, 0, cos alpha)] , show that [F(theta) G(alpha)]^-1 = G ( - alpha ) F ( - theta)

if A=[(costheta,sintheta),(-sintheta,costheta)],then A^(2)=I is true for

If A=[(costheta,-sintheta),(sintheta,costheta)], then find the values of theta satisfying the equation A^T+A=I_2 .

The value of det [(cos theta, sintheta),(-sintheta, costheta)] is equal to

Let A = {:[(costheta, -sintheta),(sinntheta, cosntheta)] for every positive integer n. Find the determinant of A.

If A = [(sintheta ,- costheta), (costheta, sintheta)] and B = [(costheta , sin theta),(-sintheta, cos theta)] . Compute (sin theta) A + (cos theta) B.

If A = [[costheta,sintheta],[-sintheta,costheta]] then prove that A^n = [[cosntheta,sinntheta],[-sinntheta,cosntheta]], n in N

Prove that (sectheta+tantheta)(1-sintheta)=costheta .

BETTER CHOICE PUBLICATION-DETERMINANTS -ASSIGNMENT (MOST IMPORTANT QUESTIONS FOR PRACTICE) (SECTION V)
  1. For what invertile matrix A of order 3 if |A| = 5 then find |adj A|

    Text Solution

    |

  2. Find the adjoint of the following matrices : [(2,-1),(4,3)]

    Text Solution

    |

  3. Find adjoint of the matrix: [[1,2],[3,4]

    Text Solution

    |

  4. Find adjoint of the matrix: [[1,-1,2],[2,3,5],[-2,0,1]]

    Text Solution

    |

  5. If A = [(costheta,-sintheta,0),(sintheta,costheta,0),(0,0,1)] verify t...

    Text Solution

    |

  6. Verify A(adj A) = (adj A).A = |A|.I :[[2,3],[-4,-6]]

    Text Solution

    |

  7. Verify A(adj A) = (adj A).A = |A|.I : [[1,-1,2],[3,0,-2],[1,0,3]]

    Text Solution

    |

  8. Find the inverse of the matrix (if it exists): [[-1,5],[-3,2]]

    Text Solution

    |

  9. Using elementary transformations find the inverse of [[1,3,-2],[-3,0,-...

    Text Solution

    |

  10. Find the inverse of the following matrices. [(-1,1,2),(3,-1,1),(-1,3...

    Text Solution

    |

  11. If A = [(2,3),(4,5)] show that A^2-7AI-2 =0 hence find A^(-1)

    Text Solution

    |

  12. If A=[(3,2),(2,1)] verify that A^2-4A-I=0 . Hence find A^(-1)

    Text Solution

    |

  13. If A=[(2,-3),(-4,7)] compute A^(-1) and show that 2A^(-1) + A-9I =0

    Text Solution

    |

  14. If A=[(2,3),(5,-2)] , show that A^(-1)=1/19A

    Text Solution

    |

  15. For what value of x is the matrix [(5-x,x+1),(2,4)] singular ?

    Text Solution

    |

  16. For what value of x is the matrix [(2x+4,4),(x+5,3)] a singular matrix...

    Text Solution

    |

  17. If A=[(3,1),(7,5)] , find x and y so that A^2 + xI-yA=0. Hence find A^...

    Text Solution

    |

  18. Find (AB)^(-1) if A=[(3,4),(1,1)] ,B^(-1)=[(4,3),(2,1)]

    Text Solution

    |

  19. Find (AB)^(-1) if A=[(5,0),(2,3)] ,B^(-1)=[(1,2),(1,4)]

    Text Solution

    |

  20. Find A^(-1) if A=[(0,1,1),(1,0,1),(1,1,0)] and show that A^(-1)=(A^2-3...

    Text Solution

    |