Home
Class 12
MATHS
Prove that |((b+c)^2,ab,ca),(ab,(a+c)^2...

Prove that `|((b+c)^2,ab,ca),(ab,(a+c)^2,bc),(ac,bc,(a+b)^2)|=2abc(a+b+c)^3`

Answer

Step by step text solution for Prove that |((b+c)^2,ab,ca),(ab,(a+c)^2,bc),(ac,bc,(a+b)^2)|=2abc(a+b+c)^3 by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    BETTER CHOICE PUBLICATION|Exercise ASSIGNMENT (PREVIOUS YEAR.S BOARD QUESTIONS FOR PRACTICE) (MULTIPLE CHOICE QUESTION)|13 Videos
  • DETERMINANTS

    BETTER CHOICE PUBLICATION|Exercise ASSIGNMENT (PREVIOUS YEAR.S BOARD QUESTIONS FOR PRACTICE )|45 Videos
  • DETERMINANTS

    BETTER CHOICE PUBLICATION|Exercise ASSIGNMENT (MOST IMPORTANT QUESTIONS FOR PRACTICE) (SECTION V) |21 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    BETTER CHOICE PUBLICATION|Exercise PREVIOUS YEARS BOARDS QUESTIONS FOR PRACTICE (MULTIPLE CHOICE QUESTIONS)|94 Videos
  • DIFFERENTIAL EQUATIONS

    BETTER CHOICE PUBLICATION|Exercise PREVIOUS YEARS BOARD.S QUESTIONS FOR PRACTICE|50 Videos

Similar Questions

Explore conceptually related problems

Prove that |{:(b^(2)+c^(2),ab,ac),(ab,c^(2)+a^(2),bc),(ac,bc,a^(2)+b^(2)):}| = 4a^(2)b^(2)c^(2)

Prove that |{:(-a^2 , ab, ac ),(ba, - b^2 , bc),(ac, bc, -c^2):}| = 4a^2 b^2 c^2.

Prove that |{:(-a^2 , ab, ac ),(ba, - b^2 , bc),(ac, bc, -c^2):}| = 4a^2 b^2 c^2.

Prove that : {:|(a^2a^2-(b-c)^2,bc),(b^2,b^2-(c-a)^2,ca),(c^2,c^2-(a-b)^2,ab)| = (b-c)(c-a)(a-b)(a+b+c)(a^2+b^2+c^2)

Prove that: {:|(a^2,a,b+c),(b^2,b,c+a),(c^2,c,ab)| = -(a+b+c)(a-b)(b-c)(c-a)

Prove that: {:|(1,a,bc),(1,b,ca),(1,c,ab)|=(a-b)(b-c)(c-a)

Prove that |(bc-a^2, ca-b^2, ab-c^2),(ca-b^2, ab-c^2, bc-a^2),(ab-c^2, bc-a^2, ca-b^2)| is divisible by a+b+c. Also find the value of the quotient.

Prove that |{:((b+c)^(2), a^(2), bc),((c+a)^(2), b^(2), ca),((a+b)^(2), c^(2), ab):}|= (a-b) (b-c)(c-a)(a + b+c) (a^(2) + b^(2) + c^(2)) .

Prove that: {:|(bc,a,1),(ca,b,1),(ab,c,1)| = (a-b)(b-c)(a-c)

Without expanding, prove the following |(b+c,c+a,a+b),(c+a,a+b,b+c),(a+b,b+c,c+a)|=2(a+b+c)(ab+bc+ca-a^2-b^2-c^2)