Home
Class 12
MATHS
The argument of (1 + i sqrt""3) // (1 ...

The argument of `(1 + i sqrt""3) // (1 - i sqrt""3)` is

A

` 60^(@)`

B

`120^(@)`

C

`210^(@)`

D

`240^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the argument of the complex number \(\frac{1 + i \sqrt{3}}{1 - i \sqrt{3}}\), we can follow these steps: ### Step 1: Write the expression We start with the expression: \[ z = \frac{1 + i \sqrt{3}}{1 - i \sqrt{3}} \] ### Step 2: Rationalize the denominator To simplify this expression, we multiply the numerator and the denominator by the conjugate of the denominator: \[ z = \frac{(1 + i \sqrt{3})(1 + i \sqrt{3})}{(1 - i \sqrt{3})(1 + i \sqrt{3})} \] ### Step 3: Expand the numerator Using the formula for the square of a binomial, we expand the numerator: \[ (1 + i \sqrt{3})^2 = 1^2 + 2(1)(i \sqrt{3}) + (i \sqrt{3})^2 = 1 + 2i \sqrt{3} - 3 = -2 + 2i \sqrt{3} \] ### Step 4: Expand the denominator Using the difference of squares formula, we expand the denominator: \[ (1 - i \sqrt{3})(1 + i \sqrt{3}) = 1^2 - (i \sqrt{3})^2 = 1 - (-3) = 1 + 3 = 4 \] ### Step 5: Combine the results Now we can combine the results from the numerator and denominator: \[ z = \frac{-2 + 2i \sqrt{3}}{4} = \frac{-1 + i \sqrt{3}}{2} \] ### Step 6: Identify real and imaginary parts From the expression \(\frac{-1 + i \sqrt{3}}{2}\), we identify: - Real part \(a = -\frac{1}{2}\) - Imaginary part \(b = \frac{\sqrt{3}}{2}\) ### Step 7: Determine the quadrant Since \(a < 0\) and \(b > 0\), the complex number lies in the second quadrant. ### Step 8: Calculate the argument The argument \(\theta\) can be calculated using the formula for the argument in the second quadrant: \[ \theta = \pi - \tan^{-1}\left(\frac{b}{a}\right) = \pi - \tan^{-1}\left(\frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}}\right) = \pi - \tan^{-1}(-\sqrt{3}) \] ### Step 9: Simplify the argument Since \(\tan^{-1}(-\sqrt{3})\) corresponds to \(-\frac{\pi}{3}\), we have: \[ \theta = \pi - \left(-\frac{\pi}{3}\right) = \pi + \frac{\pi}{3} = \frac{3\pi}{3} + \frac{\pi}{3} = \frac{4\pi}{3} \] ### Step 10: Final result Thus, the argument of the complex number \(\frac{1 + i \sqrt{3}}{1 - i \sqrt{3}}\) is: \[ \theta = \frac{2\pi}{3} \text{ (or } 120^\circ\text{)} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (M.C.Q)|111 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

log((1+i sqrt(3))/(1-i sqrt(3)))

Principal argument of z=-1-i sqrt(3)

If the arguments of (1-i)(sqrt3+i)(1+sqrt3i) and (Z-2)(barZ-1) are equal, then the locus to Z is part of a circle with centre (a, b). The value of (1)/(a+b) is

For any integer n,the argument of ((sqrt(3)+i)^(4n+1))/((1-i sqrt(3))^(4n))

the value of ((1+i sqrt(3))/(1-i sqrt(3)))^(6)+((1-i sqrt(3))/(1+i sqrt(3)))^(6) is