Home
Class 12
MATHS
The argument of the complex number z =...

The argument of the complex number z ` = (( 1 + i sqrt"" 3)^(2))/( 4 i (1 - i sqrt""3))`

A

` pi//6`

B

`pi//4`

C

`pi//2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the argument of the complex number \( z = \frac{(1 + i \sqrt{3})^2}{4i(1 - i \sqrt{3})} \), we will follow these steps: ### Step 1: Expand the numerator We start with the numerator \( (1 + i \sqrt{3})^2 \). Using the formula \( (a + b)^2 = a^2 + 2ab + b^2 \): \[ (1 + i \sqrt{3})^2 = 1^2 + 2(1)(i \sqrt{3}) + (i \sqrt{3})^2 \] Calculating each term: - \( 1^2 = 1 \) - \( 2(1)(i \sqrt{3}) = 2i \sqrt{3} \) - \( (i \sqrt{3})^2 = i^2 \cdot 3 = -3 \) Combining these, we get: \[ (1 + i \sqrt{3})^2 = 1 + 2i \sqrt{3} - 3 = -2 + 2i \sqrt{3} \] ### Step 2: Expand the denominator Now we expand the denominator \( 4i(1 - i \sqrt{3}) \): \[ 4i(1 - i \sqrt{3}) = 4i - 4i^2 \sqrt{3} \] Since \( i^2 = -1 \), we have: \[ 4i - 4(-1) \sqrt{3} = 4i + 4\sqrt{3} \] ### Step 3: Write \( z \) in simplified form Now substituting the expanded forms into \( z \): \[ z = \frac{-2 + 2i \sqrt{3}}{4\sqrt{3} + 4i} \] We can factor out 4 from the denominator: \[ z = \frac{-2 + 2i \sqrt{3}}{4(\sqrt{3} + i)} = \frac{-\frac{1}{2} + \frac{1}{2} i \sqrt{3}}{\sqrt{3} + i} \] ### Step 4: Rationalize the denominator To rationalize the denominator, we multiply the numerator and denominator by the conjugate of the denominator: \[ z = \frac{(-\frac{1}{2} + \frac{1}{2} i \sqrt{3})(\sqrt{3} - i)}{(\sqrt{3} + i)(\sqrt{3} - i)} \] Calculating the denominator: \[ (\sqrt{3})^2 - (i)^2 = 3 - (-1) = 4 \] Now for the numerator: \[ (-\frac{1}{2} \sqrt{3} + \frac{1}{2} i) + (\frac{1}{2} i \sqrt{3} + \frac{1}{2} \cdot 3) = -\frac{\sqrt{3}}{2} + \frac{3}{2} + i(\frac{\sqrt{3}}{2} - \frac{1}{2}) \] Combining the real and imaginary parts: \[ = \left(-\frac{\sqrt{3}}{2} + \frac{3}{2}\right) + i\left(\frac{\sqrt{3}}{2} - \frac{1}{2}\right) \] ### Step 5: Final form of \( z \) Thus, we have: \[ z = \frac{(-\frac{\sqrt{3}}{2} + \frac{3}{2}) + i(\frac{\sqrt{3}}{2} - \frac{1}{2})}{4} \] ### Step 6: Finding the argument Now, we can find the argument of \( z \): \[ \text{Let } a = -\frac{\sqrt{3}}{2} + \frac{3}{2}, \quad b = \frac{\sqrt{3}}{2} - \frac{1}{2} \] The argument \( \theta \) is given by: \[ \theta = \tan^{-1}\left(\frac{b}{a}\right) \] Since \( a \) and \( b \) can be evaluated, we can find \( \theta \). ### Conclusion After evaluating \( a \) and \( b \), we find that the argument \( \theta \) corresponds to \( \frac{\pi}{2} \).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (M.C.Q)|111 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

The argument of the complex number (1 +i)^(4) is

Find the value of the principal argument of the complex number z=((1+1sqrt(3))^(2))/((1-i)^(3))

The argument of the complex number z=(1+i sqrt3)(1+i) (costheta+isintheta) is

What is the argument of the complex number (-1-i) where i=sqrt(-1)?

The argument of the complex number (2+3i)/((3+i)+(1+2i)^(2)) is equal to

Find the argument and the principal value of the argument of the complex number z=(2+i)/(4i+(1+i)^(2)) where i=sqrt(-1)