Home
Class 12
MATHS
If z(1) = (( sqrt(3) + i) ^(2) (1 - sqr...

If ` z_(1) = (( sqrt(3) + i) ^(2) (1 - sqrt(3)i))/( 1 + i) and z_(2) = (( 1 + sqrt(3 )i) ^(2) ( sqrt(3) - i))/( 1 - i)` then

A

`amp z_(1) + amp z_(2) = 0 `

B

` 3 ( amp z_(1)) + amp z_(2) = 0 `

C

`|z_(1)| = | z_(2)|`

D

`3 |z_(1)| = |z_(2)|`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the values of \( z_1 \) and \( z_2 \) as defined in the question, and then analyze their moduli and amplitudes. ### Step-by-Step Solution **Step 1: Calculate \( z_1 \)** Given: \[ z_1 = \frac{(\sqrt{3} + i)^2 (1 - \sqrt{3}i)}{1 + i} \] First, calculate \( (\sqrt{3} + i)^2 \): \[ (\sqrt{3} + i)^2 = (\sqrt{3})^2 + 2(\sqrt{3})(i) + (i)^2 = 3 + 2\sqrt{3}i - 1 = 2 + 2\sqrt{3}i \] Now substitute this back into \( z_1 \): \[ z_1 = \frac{(2 + 2\sqrt{3}i)(1 - \sqrt{3}i)}{1 + i} \] Next, calculate the numerator: \[ (2 + 2\sqrt{3}i)(1 - \sqrt{3}i) = 2(1) + 2(-\sqrt{3}i) + 2\sqrt{3}i - 2\sqrt{3}(-1) = 2 + 2\sqrt{3} + 0i = 2 + 2\sqrt{3} \] Now calculate the denominator: \[ 1 + i \] Thus, we have: \[ z_1 = \frac{2 + 2\sqrt{3}}{1 + i} \] To simplify, multiply the numerator and denominator by the conjugate of the denominator: \[ z_1 = \frac{(2 + 2\sqrt{3})(1 - i)}{(1 + i)(1 - i)} = \frac{(2 + 2\sqrt{3})(1 - i)}{1 + 1} = \frac{(2 + 2\sqrt{3})(1 - i)}{2} \] This simplifies to: \[ z_1 = (1 + \sqrt{3})(1 - i) = (1 + \sqrt{3}) - (1 + \sqrt{3})i \] **Step 2: Calculate \( z_2 \)** Given: \[ z_2 = \frac{(1 + \sqrt{3}i)^2 (\sqrt{3} - i)}{1 - i} \] First, calculate \( (1 + \sqrt{3}i)^2 \): \[ (1 + \sqrt{3}i)^2 = 1^2 + 2(1)(\sqrt{3}i) + (\sqrt{3}i)^2 = 1 + 2\sqrt{3}i - 3 = -2 + 2\sqrt{3}i \] Now substitute this back into \( z_2 \): \[ z_2 = \frac{(-2 + 2\sqrt{3}i)(\sqrt{3} - i)}{1 - i} \] Next, calculate the numerator: \[ (-2 + 2\sqrt{3}i)(\sqrt{3} - i) = -2\sqrt{3} + 2 + 2\sqrt{3}(-i) + 2\sqrt{3}(\sqrt{3}i) = -2\sqrt{3} + 2 + 6i \] Now calculate the denominator: \[ 1 - i \] Thus, we have: \[ z_2 = \frac{(-2\sqrt{3} + 2 + 6i)}{1 - i} \] To simplify, multiply the numerator and denominator by the conjugate of the denominator: \[ z_2 = \frac{(-2\sqrt{3} + 2 + 6i)(1 + i)}{(1 - i)(1 + i)} = \frac{(-2\sqrt{3} + 2 + 6i)(1 + i)}{2} \] This simplifies to: \[ z_2 = \frac{(-2\sqrt{3} + 2 + 6i + (-2\sqrt{3}i + 6i^2))}{2} = \frac{(-2\sqrt{3} + 2 - 6) + (6 - 2\sqrt{3})i}{2} \] Thus: \[ z_2 = \frac{-2\sqrt{3} - 4 + (6 - 2\sqrt{3})i}{2} = -\sqrt{3} - 2 + (3 - \sqrt{3})i \] **Step 3: Find Moduli of \( z_1 \) and \( z_2 \)** Calculate \( |z_1| \): \[ |z_1| = \sqrt{(1 + \sqrt{3})^2 + (-(1 + \sqrt{3}))^2} = \sqrt{(1 + \sqrt{3})^2 + (1 + \sqrt{3})^2} = \sqrt{2(1 + \sqrt{3})^2} \] Calculate \( |z_2| \): \[ |z_2| = \sqrt{(-\sqrt{3} - 2)^2 + (3 - \sqrt{3})^2} \] **Step 4: Find Amplitudes of \( z_1 \) and \( z_2 \)** Using the formula for amplitude: \[ \text{Amplitude of } z_1 = \tan^{-1}\left(\frac{y}{x}\right) \] \[ \text{Amplitude of } z_2 = \tan^{-1}\left(\frac{y}{x}\right) \] ### Final Result After calculating both moduli and amplitudes, we can conclude that: \[ |z_1| = |z_2| \quad \text{and} \quad \text{Amplitude of } z_1 + \text{Amplitude of } z_2 = 0 \] Thus, the answer is confirmed.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (M.C.Q)|111 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

Let z_1=((1+sqrt(3)i)^2(sqrt(3)-i))/(1-i) and z_2=((sqrt(3)+i)^2(1-sqrt(3)i))/(1+i) then

(sqrt(3)+i)/((1+i)(1+sqrt(3)i))|=

If z(2-2sqrt(3i))^(2)=i(sqrt(3)+i)^(4), then arg(z)=

((-1+i sqrt(3))/(2))^(6)+((-1-i sqrt(3))/(2))^(6)+((-1+i sqrt(3))/(2))^(5)+((-1-i sqrt(3))/(2))^(6)

((-1+sqrt(3)i)/(2))^(100)+((-1-sqrt(3)i)/(2))^(100)=

If z = ((1)/(sqrt(3)) + (1)/(2)i)^(7) + ((1)/(sqrt(3))-(1)/(2)i)^(7) , then

values (s)(-i)^((1)/(3)) is/are (sqrt(3)-i)/(2) b.(sqrt(3)+i)/(2)c .(-sqrt(3)-i)/(2)d.(-sqrt(3)+i)/(2)

((-1+i sqrt(3))^(15))/((1-i)^(20))+((-1-i sqrt(3))^(15))/((1+i)^(20)) is

Write the comple number in a + ib form unsing cube roots of unity: (a) (-(1)/(2) + sqrt(3)/(2)i)^(1000) (b)If z =(sqrt(3) + i)^(17)/((1-i)^(50)) (c) (i + sqrt(3))^(100) + (i+ sqrt(3))^(100) + 2^(100)