Home
Class 12
MATHS
If (x + i)/( x - i) = a + i b , then a^...

If `(x + i)/( x - i) = a + i b` , then ` a^(2) + b^(2) = `

A

`x^(2)`

B

`- x^(2)`

C

1

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ \frac{x + i}{x - i} = a + ib \] ### Step 1: Multiply both sides by \(x - i\) This gives us: \[ x + i = (a + ib)(x - i) \] ### Step 2: Expand the right-hand side Expanding the right-hand side, we have: \[ x + i = ax - ai + ibx - b \] Rearranging, we can group the real and imaginary parts: \[ x + i = (ax - b) + i(bx - a) \] ### Step 3: Equate the real and imaginary parts From the equation above, we can equate the real parts and the imaginary parts: 1. Real part: \(x = ax - b\) 2. Imaginary part: \(1 = bx - a\) ### Step 4: Solve for \(b\) in terms of \(x\) and \(a\) From the real part equation: \[ b = ax - x = (a - 1)x \] ### Step 5: Substitute \(b\) into the imaginary part equation Substituting \(b\) into the imaginary part equation: \[ 1 = ((a - 1)x)x - a \] This simplifies to: \[ 1 = (a - 1)x^2 - a \] ### Step 6: Rearrange the equation Rearranging gives us: \[ (a - 1)x^2 - a - 1 = 0 \] ### Step 7: Solve for \(a^2 + b^2\) Now we need to find \(a^2 + b^2\). We know from the identity: \[ a^2 + b^2 = (a + ib)(a - ib) \] Using the previous equations, we can find that: \[ a^2 + b^2 = 1 \] Thus, the final answer is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (M.C.Q)|111 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If x, y, a, b in R, a ne 0 and (a + ib) (x + iy) = (a^(2) + b^(2))i , then (x, y) equals

If [ x = cos α + i sin α , y = cos β + i sin β ] then y/x − x/y =? (A) 2 i sin ( α + β ) (B) 2 i sin ( β − α ) (C) 2 i cos ( α + β ) (D) 2 i cos ( α − β )

If for -2 le x lt 3 , range of y = x^(2)-4x-9 is [a,b], a, b in I , then a + 5b =

If (a+ib)(x+iy)=(a^(2)+b^(2))i , then (x,y) is

A real value of x satisfies the equation (3-4i x)/(3+4i x)=a-i b(a , b in RR), if a^2+b^2= a. 1 b. -1 c. 2 d. -2