Home
Class 12
MATHS
If z = 1 - i sqrt(3) , then | arg z| + ...

If `z = 1 - i sqrt(3)` , then | arg z| + ` | arg bar(z)|` equals

A

`(pi)/(3)`

B

`(2 pi)/( 3)`

C

0

D

`(pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( | \arg z | + | \arg \bar{z} | \) for the complex number \( z = 1 - i \sqrt{3} \). ### Step-by-Step Solution: 1. **Identify the complex number**: \[ z = 1 - i \sqrt{3} \] Here, \( a = 1 \) and \( b = -\sqrt{3} \). 2. **Find the argument of \( z \)**: The argument \( \arg z \) can be determined using the formula: \[ \arg z = \tan^{-1} \left( \frac{b}{a} \right) \] In our case: \[ \arg z = \tan^{-1} \left( \frac{-\sqrt{3}}{1} \right) = \tan^{-1}(-\sqrt{3}) \] Since \( a > 0 \) and \( b < 0 \), \( z \) lies in the fourth quadrant. Therefore: \[ \arg z = -\frac{\pi}{3} \] 3. **Find the conjugate of \( z \)**: The conjugate \( \bar{z} \) is given by: \[ \bar{z} = 1 + i \sqrt{3} \] 4. **Find the argument of \( \bar{z} \)**: For \( \bar{z} \): \[ \arg \bar{z} = \tan^{-1} \left( \frac{\sqrt{3}}{1} \right) = \tan^{-1}(\sqrt{3}) \] Since both \( a \) and \( b \) are positive, \( \bar{z} \) lies in the first quadrant: \[ \arg \bar{z} = \frac{\pi}{3} \] 5. **Calculate the mod of the arguments**: Now we compute: \[ | \arg z | = | -\frac{\pi}{3} | = \frac{\pi}{3} \] \[ | \arg \bar{z} | = | \frac{\pi}{3} | = \frac{\pi}{3} \] 6. **Sum the mod of the arguments**: Finally, we find: \[ | \arg z | + | \arg \bar{z} | = \frac{\pi}{3} + \frac{\pi}{3} = \frac{2\pi}{3} \] ### Final Answer: \[ | \arg z | + | \arg \bar{z} | = \frac{2\pi}{3} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (M.C.Q)|111 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If z=1+i sqrt(3), then |arg(z)|+|arg(bar(z))| equals to

" If "z=sqrt((1-i)/(1+i))" ,then arg z"=

arg(bar(z))+arg(-z)={{:(pi",","if arg (z) "lt 0),(-pi",", "if arg (z) "gt 0):},"where" -pi lt arg(z) le pi . If arg(z) gt 0 , then arg (-z)-arg(z) is equal to

If z=((1+i sqrt(3))/(1+i))^(25), then arg(z) is equal to

If arg(z) lt 0, then find arg(-z) -arg(z) .