Home
Class 12
MATHS
The amplitude of (1+isqrt(3))/(sqrt(3)+i...

The amplitude of `(1+isqrt(3))/(sqrt(3)+i)` is `pi/3` b. `-pi/6` c. `pi/3` d. `pi/6`

A

`pi//6`

B

`pi//4`

C

`pi//3`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (M.C.Q)|111 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

The amplitude of (1+i sqrt(3))/(sqrt(3)+i) is (pi)/(3) b.-(pi)/(6) c.(pi)/(3) d.(pi)/(6)

cot^(-1)(-sqrt3)= (a) -pi/6 (b) (5pi)/6 (c) pi/3 (d) (2pi)/3

int_1^(sqrt(3))1/(1+x^2)dx is equal to pi/(12) b. pi/4 c. pi/6 d. pi/3

The smallest value of theta satisfying the equation sqrt(3)(cot theta+tan theta)=4 is 2 pi/3 b.pi/3c. pi/6d. pi/12

pi/4 + pi - pi/3 - pi/6

sin^(-1)((-1)/2) (a) pi/3 (b) -pi/3 (c) pi/6 (d) -pi/6

The principal value of the amplitude of (1+i) is pi b.(pi)/(12) c.(pi)/(4) d.(3 pi)/(4)

(pi)/(4)-pi/3-pi/6

A pair of tangents is drawn to a unit circle with center at the origin and these tangents intersect at A enclosing an angle of 60^0 . The area enclosed by these tangents and the arc of the circle is 2/(sqrt(3))-pi/6 (b) sqrt(3)-pi/3 pi/3-(sqrt(3))/6 (d) sqrt(3)(1-pi/6)

Find the value of tan^(-1)sqrt(3)+sec^(-1)2 (A). (2 pi)/(3) (B). (pi)/(2) (C). (pi)/(3) (D) pi