Home
Class 12
MATHS
For any integer n, arg of z = (( sqrt...

For any integer n, arg of
z ` = (( sqrt(3) + i)^(4 n + 1))/(( 1 - i sqrt(3))^(4 n))` is

A

`pi//6`

B

`pi//3`

C

`pi//2`

D

`2 pi//3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the argument of the complex number \( z = \frac{(\sqrt{3} + i)^{4n + 1}}{(1 - i\sqrt{3})^{4n}} \), we will follow these steps: ### Step 1: Find the argument of the numerator The numerator is \( (\sqrt{3} + i)^{4n + 1} \). 1. **Convert \( \sqrt{3} + i \) to polar form**: - The modulus \( r \) is given by \( r = \sqrt{(\sqrt{3})^2 + 1^2} = \sqrt{3 + 1} = \sqrt{4} = 2 \). - The argument \( \theta \) is given by \( \theta = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6} \). 2. **Express in polar form**: \[ \sqrt{3} + i = 2 \left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) = 2 e^{i\frac{\pi}{6}} \] 3. **Raise to the power \( 4n + 1 \)**: \[ (\sqrt{3} + i)^{4n + 1} = (2 e^{i\frac{\pi}{6}})^{4n + 1} = 2^{4n + 1} e^{i\frac{(4n + 1)\pi}{6}} \] 4. **Argument of the numerator**: \[ \text{arg}((\sqrt{3} + i)^{4n + 1}) = \frac{(4n + 1)\pi}{6} \] ### Step 2: Find the argument of the denominator The denominator is \( (1 - i\sqrt{3})^{4n} \). 1. **Convert \( 1 - i\sqrt{3} \) to polar form**: - The modulus \( r \) is given by \( r = \sqrt{1^2 + (-\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4} = 2 \). - The argument \( \theta \) is given by \( \theta = \tan^{-1}\left(\frac{-\sqrt{3}}{1}\right) = -\frac{\pi}{3} \). 2. **Express in polar form**: \[ 1 - i\sqrt{3} = 2 \left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right) = 2 e^{-i\frac{\pi}{3}} \] 3. **Raise to the power \( 4n \)**: \[ (1 - i\sqrt{3})^{4n} = (2 e^{-i\frac{\pi}{3}})^{4n} = 2^{4n} e^{-i\frac{4n\pi}{3}} \] 4. **Argument of the denominator**: \[ \text{arg}((1 - i\sqrt{3})^{4n}) = -\frac{4n\pi}{3} \] ### Step 3: Combine the arguments Now we can find the argument of \( z \): \[ \text{arg}(z) = \text{arg}((\sqrt{3} + i)^{4n + 1}) - \text{arg}((1 - i\sqrt{3})^{4n}) \] \[ \text{arg}(z) = \frac{(4n + 1)\pi}{6} - \left(-\frac{4n\pi}{3}\right) \] \[ = \frac{(4n + 1)\pi}{6} + \frac{4n\pi}{3} \] ### Step 4: Simplify the expression To combine the fractions, we need a common denominator: \[ \frac{4n\pi}{3} = \frac{8n\pi}{6} \] So, \[ \text{arg}(z) = \frac{(4n + 1)\pi}{6} + \frac{8n\pi}{6} = \frac{(4n + 1 + 8n)\pi}{6} = \frac{(12n + 1)\pi}{6} \] Thus, the final result is: \[ \text{arg}(z) = \frac{(12n + 1)\pi}{6} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (M.C.Q)|111 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

For any integer n,the argument of ((sqrt(3)+i)^(4n+1))/((1-i sqrt(3))^(4n))

((1+i sqrt(3))/(1-i sqrt(3)))^(n) is an integer,then n is

n in N,((1+i)/(sqrt(2)))^(8n)+((1-i)/(sqrt(2)))^(8n)=

n in N((1+i)/(sqrt(2)))^(8n)+((1-i)/(sqrt(2)))^(8n)=

the value of ((-1+sqrt(3)i)/(2))^(3n)+((-1-sqrt(3)i)/(2))^(3n)=

If n in N((1+i)/(sqrt(2)))^(8n)+((1-i)/(sqrt(2)))^(8)n is

The least positive integer n for which ((1+sqrt(3)i)/(1-sqrt(3)i))^(n) = 1 , is

If n is a positive integer,then (sqrt(3)+i)^(n)+(sqrt(3)-i)^(n) is

What is the value of ((-1+i sqrt(3))/(2))^(3n)+((-1-i sqrt(3))/(2))^(3n), where i=sqrt(-1)?