Home
Class 12
MATHS
The real value of theta for which the ...

The real value of `theta` for which the expression `(1 - i sin theta)/( 1 + 2 i sin theta)` is purely real is

A

`n pi`

B

`(n + 1) pi// 2 `

C

`(2 n + 1) pi//2`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To find the values of \( \theta \) for which the expression \[ \frac{1 - i \sin \theta}{1 + 2i \sin \theta} \] is purely real, we will follow these steps: ### Step 1: Identify the expression Let \[ z = \frac{1 - i \sin \theta}{1 + 2i \sin \theta} \] ### Step 2: Rationalize the denominator To simplify, we multiply the numerator and denominator by the conjugate of the denominator: \[ z = \frac{(1 - i \sin \theta)(1 - 2i \sin \theta)}{(1 + 2i \sin \theta)(1 - 2i \sin \theta)} \] ### Step 3: Simplify the denominator The denominator simplifies as follows: \[ (1 + 2i \sin \theta)(1 - 2i \sin \theta) = 1^2 - (2i \sin \theta)^2 = 1 - 4(-1)(\sin^2 \theta) = 1 + 4 \sin^2 \theta \] ### Step 4: Simplify the numerator Now, simplify the numerator: \[ (1 - i \sin \theta)(1 - 2i \sin \theta) = 1 - 2i \sin \theta - i \sin \theta + 2(-1)(\sin^2 \theta) = 1 - 3i \sin \theta - 2 \sin^2 \theta \] ### Step 5: Combine the results Now we can write \( z \) as: \[ z = \frac{(1 - 2 \sin^2 \theta) - 3i \sin \theta}{1 + 4 \sin^2 \theta} \] ### Step 6: Separate real and imaginary parts The expression can be separated into real and imaginary parts: \[ z = \frac{1 - 2 \sin^2 \theta}{1 + 4 \sin^2 \theta} - i \frac{3 \sin \theta}{1 + 4 \sin^2 \theta} \] ### Step 7: Set the imaginary part to zero For \( z \) to be purely real, the imaginary part must be zero: \[ - \frac{3 \sin \theta}{1 + 4 \sin^2 \theta} = 0 \] This implies: \[ 3 \sin \theta = 0 \] ### Step 8: Solve for \( \theta \) Thus, we have: \[ \sin \theta = 0 \] The solutions for \( \sin \theta = 0 \) are given by: \[ \theta = n\pi \quad (n \in \mathbb{Z}) \] ### Conclusion The real values of \( \theta \) for which the expression is purely real are: \[ \theta = n\pi \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (M.C.Q)|111 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

The real value of theta for which the expression (1 + icos theta)/(1 - 2i cos theta) is real number is

The real value of theta for which the expression (1+i cos theta)/(1-2i cos theta) is real number is

The real value of alpha for which the expression (1-i sin alpha)/(1+2i sin alpha) is purely real is

Find the real values of theta for which the complex number (1+i cos theta)/(1-2i cos theta) is purely real.

(5 + i sin theta)/(5-3i sin theta) is a real number when

Find real theta such that (3+2i sin theta)/(1-2i sin theta) is purely real.