Home
Class 12
MATHS
If a, b, in R " then " |e^(a+ ib)|...

If ` a, b, in R " then " |e^(a+ ib)|`

A

`e^(a)`

B

`e^(b)`

C

1

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To find the modulus of the complex number \( e^{a + ib} \), where \( a, b \in \mathbb{R} \), we can follow these steps: ### Step-by-Step Solution: 1. **Express the complex number**: We start with the expression \( e^{a + ib} \). According to the properties of exponents, we can separate the real and imaginary parts: \[ e^{a + ib} = e^a \cdot e^{ib} \] 2. **Use Euler's formula**: Euler's formula states that \( e^{ib} = \cos(b) + i\sin(b) \). Thus, we can rewrite our expression as: \[ e^{a + ib} = e^a \cdot (\cos(b) + i\sin(b)) \] 3. **Find the modulus**: The modulus of a complex number \( z = x + iy \) is given by \( |z| = \sqrt{x^2 + y^2} \). In our case, we have: \[ |e^{a + ib}| = |e^a \cdot (\cos(b) + i\sin(b))| \] By the property of moduli, we can separate the modulus: \[ |e^{a + ib}| = |e^a| \cdot |(\cos(b) + i\sin(b))| \] 4. **Calculate the modulus of each part**: - The modulus of \( e^a \) is simply \( e^a \) since \( a \) is a real number. - The modulus of \( \cos(b) + i\sin(b) \) can be calculated as: \[ |(\cos(b) + i\sin(b))| = \sqrt{\cos^2(b) + \sin^2(b)} \] Using the Pythagorean identity \( \cos^2(b) + \sin^2(b) = 1 \), we find: \[ |(\cos(b) + i\sin(b))| = \sqrt{1} = 1 \] 5. **Combine the results**: Now, we can combine the results from the modulus calculations: \[ |e^{a + ib}| = e^a \cdot 1 = e^a \] ### Final Answer: Thus, the modulus \( |e^{a + ib}| \) is: \[ \boxed{e^a} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (M.C.Q)|111 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If x, y, a, b in R, a ne 0 and (a + ib) (x + iy) = (a^(2) + b^(2))i , then (x, y) equals

If multiplicative inverse of (1 + i) is a + ib then (a + b) equals to

Show that if a,b,c,d in R , overline((a+ib)(c+id))=(a-ib)(c-id) .

If the number of ordered pairs (a,b) where a,b in R such that (a+ib)^(5015)=(a-ib)^(3) is k , then the unit digit of k is equal to________

a,b in R, find the number of complex numbers a+ib for which (a+ib)^(2)=(a-ib)^(2)

If A,B and C are angles of a triangle ABC then the value of |[4e^(2iA), e^(-iC), e^(-iB)] , [e^(-iC), 4e^(2iB), e^(-iA)] , [e^(-iB), e^(-iA), 4e^(2iC)]| is

If A,B and C are angle of a triangle of a triangle ,the value of |{:(e^(2iA),e^(-iC),e^(-iB)),(e^(-iC),e^(2iB),e^(-iA)),(e^(-iB),e^(-iA),e^(2iC)):}| is (where i= sqrt(-1))

if cos (1-i) = a+ib, where a , b in R and i = sqrt(-1) , then