Home
Class 12
MATHS
If 27 i z^(3) + 18 z^(2) - 12 z + 8i = ...

If ` 27 i z^(3) + 18 z^(2) - 12 z + 8i = 0, ` then |z| =

A

`(2)/(3)`

B

`(4)/(9)`

C

1

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 27i z^3 + 18z^2 - 12z + 8i = 0 \) and find the modulus of \( z \), we can follow these steps: ### Step 1: Factor out common terms We start by factoring out \( 9z^2 \) from the first two terms: \[ 27i z^3 + 18z^2 - 12z + 8i = 0 \] This can be rewritten as: \[ 9z^2(3iz + 2) - 12z + 8i = 0 \] ### Step 2: Rearranging the equation Next, we rearrange the equation to isolate the terms involving \( z \): \[ 9z^2(3iz + 2) = 12z - 8i \] ### Step 3: Set the equation to zero We can set the equation to zero by moving all terms to one side: \[ 9z^2(3iz + 2) - 12z + 8i = 0 \] ### Step 4: Identify factors Notice that we can express this as: \[ (3iz + 2)(9z^2 - 4) = 0 \] ### Step 5: Solve for \( z \) Now, we can set each factor to zero. 1. From \( 3iz + 2 = 0 \): \[ 3iz = -2 \implies z = -\frac{2}{3i} = \frac{2i}{3} \] 2. From \( 9z^2 - 4 = 0 \): \[ 9z^2 = 4 \implies z^2 = \frac{4}{9} \implies z = \pm \frac{2}{3} \] ### Step 6: Find the modulus of \( z \) Now, we need to find the modulus of \( z \): - For \( z = \frac{2i}{3} \): \[ |z| = \left| \frac{2i}{3} \right| = \frac{2}{3} \] - For \( z = \frac{2}{3} \): \[ |z| = \left| \frac{2}{3} \right| = \frac{2}{3} \] Thus, the modulus of \( z \) is: \[ |z| = \frac{2}{3} \] ### Final Answer: \[ |z| = \frac{2}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (M.C.Q)|111 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If iz^(3) + z^(2) - z + I = 0 , then |z| =_______

Let z_(1), z_(2), z_(3) be the roots of iz^(3) + 5z^(2) - z + 5i = 0 , then |z_(1)| + |z_(2)| + |z_(3)| = _____________.

If 8 iota z^(3)+12z^(2)-18z+27 iota=0 then: a.|z|=(3)/(2)b|z|=(2)/(3)c*|z|=1

If 8iz^(3)+12z^(2)-18z+27i=0 then 2|z|=

If z = 2 + i, prove that z^(3) + 3z^(2) - 9z + 8 = (1 + 14i) .

Show that if iz^(3)+z^(2)-z+i=0, then |z|=1

Let A = {z : z in C, iz^(3) + z^(2) -z + i=0} and B ={z : z in C, |z|=1} , Then