Home
Class 12
MATHS
e^(2 ni cot^(-1)(x)) [ ( x i + 1)/( x i ...

`e^(2 ni cot^(-1)(x)) [ ( x i + 1)/( x i - 1)]^(n)`
where n and x are real numbers, is equal to

A

`(n)/(2)`

B

`((n+1))/(2)`

C

1

D

`e^(ix)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( e^{2ni \cot^{-1}(x)} \left( \frac{xi + 1}{xi - 1} \right)^{n} \), we will follow these steps: ### Step 1: Substitute \( \theta = \cot^{-1}(x) \) Let \( \theta = \cot^{-1}(x) \). This implies that \( x = \cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)} \). **Hint:** Remember that \( \cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)} \). ### Step 2: Rewrite the expression Now, we can rewrite the expression in terms of \( \theta \): \[ e^{2ni \theta} \left( \frac{xi + 1}{xi - 1} \right)^{n} \] ### Step 3: Substitute \( x \) in the fraction Substituting \( x = \cot(\theta) \) into the fraction: \[ \frac{xi + 1}{xi - 1} = \frac{\cot(\theta)i + 1}{\cot(\theta)i - 1} \] ### Step 4: Simplify the fraction To simplify, multiply the numerator and denominator by \( \sin(\theta) \): \[ = \frac{\cos(\theta)i + \sin(\theta)}{\cos(\theta)i - \sin(\theta)} \] ### Step 5: Recognize the form of the expression This can be recognized as a form of the exponential function: \[ = \frac{\sin(\theta) + i\cos(\theta)}{\sin(\theta) - i\cos(\theta)} = e^{i\theta} \] ### Step 6: Raise to the power of \( n \) Now, raise this to the power \( n \): \[ \left( e^{i\theta} \right)^{n} = e^{in\theta} \] ### Step 7: Combine the exponentials Now we combine the exponentials: \[ e^{2ni\theta} \cdot e^{in\theta} = e^{(2n + n)i\theta} = e^{3ni\theta} \] ### Step 8: Substitute back for \( \theta \) Substituting back \( \theta = \cot^{-1}(x) \): \[ e^{3ni \cot^{-1}(x)} \] ### Final Result Thus, the expression simplifies to: \[ e^{3ni \cot^{-1}(x)} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (M.C.Q)|111 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

Let (-2 -1/3 i)^3=(x+iy)/27 (i= sqrt(-1)) where x and y are real numbers then y-x equals

int ((x ^(2) -x+1)/(x ^(2) +1)) e ^(cot^(-1) (x))dx =f (x) .e ^(cot ^(-1)(x)) +C where C is constant of integration. Then f (x) is equal to:

cot^(-1)x+cot^(-1)(n^(2)-x+1)=cot^(-1)(n-1)

If I_(n)=int_(1)^(e)(ln x)^(n)dx(n is a natural number) then I_(2020)+nI_(m)=e, where n,m in N .The value of m+n is equal to

If x!=n and cot^(-1)x+cot^(-1)(n^(2)-x+1)=cot^(-1)(n-1) then x=

if f(x)=lim_(n rarr oo)((1+sin x)^(n)+e^(x))/(1+(1+sin x)^(n)) where x in[-2 pi,2 pi], If p,q denotes number of values of x where f(x) is discontinuous and non-derivable respectively then 'p+q' is equal to

LetI_(1)=int_(0)^(n)[x]dx and I_(2)=int_(0)^(n){x}dx where [x] and {x} are integral and fractionalparts of x and n in N-{1}. Then (I_(1))/(I_(2)) is equal to