Home
Class 12
MATHS
If - 3 + i x ^(2) y and x^(2) + y + 4i ...

If ` - 3 + i x ^(2) y and x^(2) + y + 4i` be conjugate complex, then (x, y) is

A

(1, - 4)

B

(-1, - 4)

C

(2, 1)

D

(-2, 1)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \(x\) and \(y\) given that the complex numbers \(-3 + i x^2 y\) and \(x^2 + y + 4i\) are conjugate complex numbers. ### Step-by-step Solution: 1. **Understanding Conjugate Complex Numbers**: Two complex numbers \(a + bi\) and \(c + di\) are conjugates if \(a = c\) and \(b = -d\). 2. **Identify the Real and Imaginary Parts**: Let: \[ z_1 = -3 + i x^2 y \] \[ z_2 = x^2 + y + 4i \] Here, the real part of \(z_1\) is \(-3\) and the imaginary part is \(x^2 y\). For \(z_2\), the real part is \(x^2 + y\) and the imaginary part is \(4\). 3. **Set Up the Equations**: From the definition of conjugates, we have: \[ -3 = x^2 + y \quad \text{(1)} \] \[ x^2 y = -4 \quad \text{(2)} \] 4. **Express \(y\) in Terms of \(x^2\)**: From equation (1): \[ y = -3 - x^2 \quad \text{(3)} \] 5. **Substitute \(y\) into Equation (2)**: Substitute equation (3) into equation (2): \[ x^2(-3 - x^2) = -4 \] Simplifying this gives: \[ -3x^2 - x^4 = -4 \] Rearranging: \[ x^4 + 3x^2 - 4 = 0 \] 6. **Let \(u = x^2\)**: Rewrite the equation as: \[ u^2 + 3u - 4 = 0 \] 7. **Solve the Quadratic Equation**: Using the quadratic formula \(u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): \[ u = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 1 \cdot (-4)}}{2 \cdot 1} \] \[ u = \frac{-3 \pm \sqrt{9 + 16}}{2} \] \[ u = \frac{-3 \pm 5}{2} \] This gives: \[ u = 1 \quad \text{or} \quad u = -4 \] 8. **Find \(x^2\)**: Since \(u = x^2\): - If \(u = 1\), then \(x^2 = 1\) which gives \(x = 1\) or \(x = -1\). - If \(u = -4\), then \(x^2 = -4\) which is not valid for real \(x\). 9. **Find Corresponding \(y\) Values**: Using equation (3): - For \(x = 1\): \[ y = -3 - 1^2 = -4 \] - For \(x = -1\): \[ y = -3 - (-1)^2 = -4 \] 10. **Final Pairs**: The pairs \((x, y)\) are: \[ (1, -4) \quad \text{and} \quad (-1, -4) \] ### Conclusion: Thus, the values of \((x, y)\) are \((1, -4)\) and \((-1, -4)\).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (M.C.Q)|111 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If 3ix^(2)y and x^(2)+y+4i are conjugate complex numbers then x^(2)+y^(2)=(i)1(ii)2 (iii) 3 (iv) 4

Find real values of x and y for which the complex numbers -5 + ix^(2)y and x^(2) + y + 35 i are conjugate of each other .

Find real values of x and y for which the complex numbers 7 + ix^(2)y and x^(2) + y + 18i are conjugate of each other.

Find real values of x and y for which the complex numbers -3+ix^(2)y and x^(2)+y+4i are conjugate of each other.

Suppose x, y in R . If x^(2) + y + 4i is conjugate of -3 + x^(2) yi , then maximum possible value of (|x| + |y|)^(2) is equal to _____________.

(a) Write the conjugates of the following: (i) 3+i (ii) 3-i (iii) -sqrt(5)-sqrt(7)i (iv) -sqrt(5)i (v) (4)/(5) (vi) 49-(i)/(7) (vii) (1-i)/(1+i) (viii) (1+i)^(2) (ix) (2+5i)^(2) (x) (-2-(1)/(3)i)^(3) (b) Find the real number x and y if: (i) (x-iy)(3+5i) is the conjugate of -6-24 i (ii) -3+ix^(2)y and x^(2)+y+4i are congugate of each other.

If (x^(2)+x)+iy and (-x-1)-i(x+2y) are conjugate of each other,then real value of x&y are x=-1,y=1 b.x=1,y=-1 c.x=1,y=1 d.x=-1,y=-1

Find the real values of x and y for which z_(1)=9y^(2)-4-10ix and z_(2)=8y^(2)-20i are conjugate complex of each other.