Home
Class 12
MATHS
If (a (1) + i b(2)) ( a(2) + i b (2)) ....

If ` (a _(1) + i b_(2)) ( a_(2) + i b _(2)) . . . ( a_(n) + i b_(n)) = A + i B , " then " ( a_(1)^(2) + b_(1)^(2)) ( a_(2)^(2) + b_(2)^(2)) . . . ( a_(n)^(2) + b_(n)^(2))` is equal to

A

1

B

`A^(2) + B^(2)`

C

A + B

D

`(1)/(A^(2)) + (1)/(B^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the product \((a_1^2 + b_1^2)(a_2^2 + b_2^2) \ldots (a_n^2 + b_n^2)\) given that \((a_1 + ib_1)(a_2 + ib_2) \ldots (a_n + ib_n) = A + iB\). ### Step-by-Step Solution: 1. **Understanding the Given Expression**: We have the product of complex numbers: \[ (a_1 + ib_1)(a_2 + ib_2) \ldots (a_n + ib_n) = A + iB \] 2. **Taking Modulus on Both Sides**: We take the modulus of both sides: \[ |(a_1 + ib_1)(a_2 + ib_2) \ldots (a_n + ib_n)| = |A + iB| \] 3. **Using the Property of Modulus**: The modulus of a product of complex numbers is the product of their moduli: \[ |a_1 + ib_1| \cdot |a_2 + ib_2| \cdots |a_n + ib_n| = |A + iB| \] 4. **Calculating the Modulus of Each Complex Number**: The modulus of a complex number \(a + ib\) is given by: \[ |a + ib| = \sqrt{a^2 + b^2} \] Therefore, we can express the moduli as: \[ |a_1 + ib_1| = \sqrt{a_1^2 + b_1^2}, \quad |a_2 + ib_2| = \sqrt{a_2^2 + b_2^2}, \ldots, |a_n + ib_n| = \sqrt{a_n^2 + b_n^2} \] 5. **Substituting Back into the Modulus Equation**: This gives us: \[ \sqrt{a_1^2 + b_1^2} \cdot \sqrt{a_2^2 + b_2^2} \cdots \sqrt{a_n^2 + b_n^2} = \sqrt{A^2 + B^2} \] 6. **Squaring Both Sides**: Squaring both sides to eliminate the square roots: \[ (a_1^2 + b_1^2)(a_2^2 + b_2^2) \cdots (a_n^2 + b_n^2) = A^2 + B^2 \] 7. **Conclusion**: Thus, we find that: \[ (a_1^2 + b_1^2)(a_2^2 + b_2^2) \cdots (a_n^2 + b_n^2) = A^2 + B^2 \] ### Final Answer: The value of \((a_1^2 + b_1^2)(a_2^2 + b_2^2) \ldots (a_n^2 + b_n^2)\) is equal to \(A^2 + B^2\).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (M.C.Q)|111 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If quad (a_(1)+ib_(1))(a_(2)+ib_(2))....(a_(n)+ib_(n))=A+iB, then (a_(1)^(2)+b_(1)^(2))(a_(2)^(2)+b_(2)^(2))......(a_(n)^(2)+b_(n)^(2)) is equal to (A)1(B)(A^(2)+B^(2))(C)(A+B)(D)((1)/(A^(2))+(1)/(B^(2)))

If (a_(1)+ib_(1))(a_(2)+ib_(2))………………(a_(n)+ib_(n))=A+iB , then sum_(i=1)^(n) tan^(-1)(b_(i)/a_(i)) is equal to

Given that (a_(1)+ib_(1))(a_(2)+ib_(2)) . . . .(a_(n)+ib_(n))=c+id , show that: tan^(-1)((b_(1))/(a_(1)))+tan^(-1)((b_(2))/(a_(2)))+ . . .+tan^(-1)((b_(n))/(a_(n)))=mpi+tan^(-1)((d)/(c)) .

Given that: (a_(1)+ib_(1))(a_(2)+ib_(2)) . . . (a_(n)+ib_(n))=c+id , show that: tan^(-1)((b_(1))/(a_(1)))+tan^(-1)((b_(2))/(a_(2)))+ . . .+tan^(-1)((b_(n))/(a_(n))) =mpi+tan^(-1)((d)/(c)) .

If a_(1),a_(2),a_(3),a_(4),,……, a_(n-1),a_(n) " are distinct non-zero real numbers such that " (a_(1)^(2) + a_(2)^(2) + a_(3)^(2) + …..+ a_(n-1)^(2))x^2 + 2 (a_(1)a_(2) + a_(2)a_(3) + a_(3)a_(4) + ……+ a_(n-1) a_(n))x + (a_(2)^(2) +a_(3)^(2) + a_(4)^(2) +......+ a_(n)^(2)) le 0 " then " a_(1), a_(2), a_(3) ,....., a_(n-1), a_(n) are in

If f(x)=(a_(1)x+b_(1))^(2)+(a_(2)x+b_(2))^(2)+...+(a_(n)x+b_(n))^(2), then prove that (a_(1)b_(1)+a_(2)b_(2)+...+a_(n)b_(n))^(2)<=(a_(1)^(2)+a_(2)^(2)+...+a_(n)^(2))(b_(1)^(2)+b_(2)^(2)+...+b_(n)^(2))