Home
Class 12
MATHS
Let z be a complex number such that | z...

Let z be a complex number such that `| z + (1)/(z)| = 2 ` If |z| ` = r_(1) and r_(2) " for arg " z = (pi)/(4)` than
`| r_(1) - r_(2)|` =

A

`(1)/(sqrt(2))`

B

1

C

`sqrt(2)`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( r_1 \) and \( r_2 \) such that \( |z + \frac{1}{z}| = 2 \) given that \( |z| = r_1 \) and \( \arg(z) = \frac{\pi}{4} \). ### Step-by-step Solution: 1. **Express \( z \)**: Since \( \arg(z) = \frac{\pi}{4} \), we can express \( z \) in polar form: \[ z = r e^{i \frac{\pi}{4}} = r \left( \frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}} \right) \] 2. **Calculate \( \frac{1}{z} \)**: The reciprocal of \( z \) is: \[ \frac{1}{z} = \frac{1}{r e^{i \frac{\pi}{4}}} = \frac{1}{r} e^{-i \frac{\pi}{4}} = \frac{1}{r} \left( \frac{1}{\sqrt{2}} - i \frac{1}{\sqrt{2}} \right) \] 3. **Add \( z \) and \( \frac{1}{z} \)**: Now we add \( z \) and \( \frac{1}{z} \): \[ z + \frac{1}{z} = r \left( \frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}} \right) + \frac{1}{r} \left( \frac{1}{\sqrt{2}} - i \frac{1}{\sqrt{2}} \right) \] Simplifying this, we get: \[ z + \frac{1}{z} = \left( r + \frac{1}{r} \right) \frac{1}{\sqrt{2}} + i \left( r - \frac{1}{r} \right) \frac{1}{\sqrt{2}} \] 4. **Calculate the modulus**: The modulus of \( z + \frac{1}{z} \) is given by: \[ |z + \frac{1}{z}| = \sqrt{ \left( \left( r + \frac{1}{r} \right) \frac{1}{\sqrt{2}} \right)^2 + \left( \left( r - \frac{1}{r} \right) \frac{1}{\sqrt{2}} \right)^2 } \] This simplifies to: \[ |z + \frac{1}{z}| = \frac{1}{\sqrt{2}} \sqrt{ \left( r + \frac{1}{r} \right)^2 + \left( r - \frac{1}{r} \right)^2 } \] 5. **Simplify the expression**: Expanding the squares: \[ \left( r + \frac{1}{r} \right)^2 + \left( r - \frac{1}{r} \right)^2 = r^2 + 2 + \frac{1}{r^2} + r^2 - 2 + \frac{1}{r^2} = 2r^2 + 2\frac{1}{r^2} \] Thus: \[ |z + \frac{1}{z}| = \frac{1}{\sqrt{2}} \sqrt{2 \left( r^2 + \frac{1}{r^2} \right)} = \sqrt{r^2 + \frac{1}{r^2}} \] 6. **Set up the equation**: Given \( |z + \frac{1}{z}| = 2 \), we have: \[ \sqrt{r^2 + \frac{1}{r^2}} = 2 \] Squaring both sides: \[ r^2 + \frac{1}{r^2} = 4 \] 7. **Multiply through by \( r^2 \)**: \[ r^4 - 4r^2 + 1 = 0 \] Let \( x = r^2 \): \[ x^2 - 4x + 1 = 0 \] 8. **Use the quadratic formula**: \[ x = \frac{4 \pm \sqrt{16 - 4}}{2} = \frac{4 \pm \sqrt{12}}{2} = 2 \pm \sqrt{3} \] Therefore: \[ r_1^2 = 2 + \sqrt{3}, \quad r_2^2 = 2 - \sqrt{3} \] 9. **Find \( |r_1 - r_2| \)**: We need to find \( |r_1 - r_2| \): \[ |r_1 - r_2| = \sqrt{2 + \sqrt{3}} - \sqrt{2 - \sqrt{3}} \] 10. **Calculate the final result**: To find the numerical value: \[ |r_1 - r_2| = \sqrt{2 + \sqrt{3}} - \sqrt{2 - \sqrt{3}} = \sqrt{2} \quad \text{(after simplification)} \] ### Final Answer: \[ |r_1 - r_2| = \sqrt{2} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (M.C.Q)|111 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

z_(1) "the"z_(2) "are two complex numbers such that" |z_(1)| = |z_(2)| . "and" arg (z_(1)) + arg (z_(2) = pi," then show that "z_(1) = - barz_(2).

Statement-1 : let z_(1) and z_(2) be two complex numbers such that arg (z_(1)) = pi/3 and arg(z_(2)) = pi/6 " then arg " (z_(1) z_(2)) = pi/2 and Statement -2 : arg(z_(1)z_(2)) = arg(z_(1)) + arg(z_(2)) + 2kpi, k in { 0,1,-1}

Let Z and w be two complex number such that |zw|=1 and arg(z)-arg(w)=pi/2 then

Let | z_ (1) | = | z_ (2) | and arg (z_ (1)) + arg (z_ (2)) = (pi) / (2) then

If z_(1)-z_(2) are two complex numbers such that |(z_(1))/(z_(2))|=1 and arg (z_(1)z_(2))=0, then

If z_(1),z_(2) and z_(3) are three distinct complex numbers such that |z_(1)| = 1, |z_(2)| = 2, |z_(3)| = 4, arg(z_(2)) = arg(z_(1)) - pi, arg(z_(3)) = arg(z_(1)) + pi//2 , then z_(2)z_(3) is equal to