Home
Class 12
MATHS
If z ans w are two non-zero complex numb...

If z ans w are two non-zero complex numbers such that `|zw|=1` and arg (z) = arg (w) `= ( pi)/( 2), bar(z) w` is equal to

A

1

B

`-1`

C

i

D

`-i`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (M.C.Q)|111 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If z and w are two non - zero complex numbers such that |zw|=1 and arg(z)-arg(w)=(pi)/(2), then the value of 5ibarzw is equal to

If z and w are two complex number such that |zw|=1 and arg(z)arg(w)=(pi)/(2), then show that bar(z)w=-i

Let Z and w be two complex number such that |zw|=1 and arg(z)-arg(w)=pi/2 then

Let zandw be two nonzero complex numbers such that |z|=|w| andarg (z)+arg(w)=pi Then prove that z=-bar(w) .

[" 1.If "z" and "omega" are two non-zero complex numbers such that "],[|z omega|=1" and "Arg(z)-Arg(omega)=(pi)/(2)," then "bar(z)omega" is equal to "]

Let z and w be two non-zero complex number such that |z|=|w| and arg (z)+arg(w)=pi then z equals.w(b)-w (c) w(d)-w

If z_(1) and z_(2) are two non-zero complex number such that |z_(1)z_(2)|=2 and arg(z_(1))-arg(z_(2))=(pi)/(2) ,then the value of 3iz_(1)z_(2)