Home
Class 12
MATHS
(z(1),z(2)) and (z(3) , z(4)) are two ...

`(z_(1),z_(2)) and (z_(3) , z_(4)) ` are two pairs of conjugate complex numbers then arg `(z_(1))/( z_(3)) + arg"" (z_(2))/( z_(4))` is equal to

A

0

B

`(pi)/(2)`

C

`pi`

D

`-(pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \arg\left(\frac{z_1}{z_3}\right) + \arg\left(\frac{z_2}{z_4}\right) \), given that \( z_1, z_2 \) are conjugate pairs and \( z_3, z_4 \) are also conjugate pairs. ### Step-by-Step Solution: 1. **Identify the Conjugate Relationships**: - Since \( z_1 \) and \( z_2 \) are conjugate pairs, we can express \( z_2 \) as: \[ z_2 = \overline{z_1} \] - Similarly, since \( z_3 \) and \( z_4 \) are conjugate pairs, we can express \( z_4 \) as: \[ z_4 = \overline{z_3} \] 2. **Express the Arguments**: - We need to find: \[ \arg\left(\frac{z_1}{z_3}\right) + \arg\left(\frac{z_2}{z_4}\right) \] - Using the properties of arguments, we can combine the arguments: \[ \arg\left(\frac{z_1}{z_3}\right) + \arg\left(\frac{z_2}{z_4}\right) = \arg\left(\frac{z_1}{z_3} \cdot \frac{z_2}{z_4}\right) \] 3. **Substitute the Conjugate Expressions**: - Substitute \( z_2 \) and \( z_4 \) with their conjugate forms: \[ \frac{z_1}{z_3} \cdot \frac{z_2}{z_4} = \frac{z_1}{z_3} \cdot \frac{\overline{z_1}}{\overline{z_3}} = \frac{z_1 \cdot \overline{z_1}}{z_3 \cdot \overline{z_3}} \] 4. **Simplify the Expression**: - The numerator \( z_1 \cdot \overline{z_1} \) is equal to \( |z_1|^2 \) (the square of the modulus of \( z_1 \)). - The denominator \( z_3 \cdot \overline{z_3} \) is equal to \( |z_3|^2 \) (the square of the modulus of \( z_3 \)). - Therefore, we have: \[ \frac{z_1 \cdot \overline{z_1}}{z_3 \cdot \overline{z_3}} = \frac{|z_1|^2}{|z_3|^2} \] 5. **Determine the Argument**: - Since \( |z_1|^2 \) and \( |z_3|^2 \) are both positive real numbers, the argument of a positive real number is: \[ \arg\left(\frac{|z_1|^2}{|z_3|^2}\right) = 0 \] 6. **Final Result**: - Therefore, we conclude that: \[ \arg\left(\frac{z_1}{z_3}\right) + \arg\left(\frac{z_2}{z_4}\right) = 0 \] ### Conclusion: The final answer is: \[ \arg\left(\frac{z_1}{z_3}\right) + \arg\left(\frac{z_2}{z_4}\right) = 0 \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (M.C.Q)|111 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If z_(1),z_(2) and z_(3),z_(4) are two pairs of conjugate complex numbers then arg ((z_(1))/(z_(4)))+arg((z_(2))/(z_(3))) equals

If z_(1),z_(2) and z_(3),z_(4) are two pairs of conjugate complex numbers then arg((z_(1))/(z_(4)))+arg((z_(2))/(z_(3)))=

If z_(1),z_(2) and z_(3),z_(4) are two pairs of conjugate complex numbers,prove that arg ((z_(1))/(z_(4)))+arg((z_(2))/(z_(3)))=0

If z_(1),z_(2),z_(3),z_(4) are two pairs of conjugate complex numbers, then arg(z_(1)/z_(3)) + arg(z_(2)/z_(4)) is

If z_(1),z_(2) and z_(3),z_(4) are two pairs of conjugate complex numbers,hen find the value of arg(z_(1)/z_(4))+arg(z_(2)/z_(3))*a

If z^(1),z^(2) and z^(3),z^(4) are two pairs of conjugate complex number, then find arg 2((z_(1))/(z_(4)))+ ((z_(2))/(z_(3))).

If Z_1,Z_2 and Z_3 , Z_4 are two pairs of conjugate complex numbers then arg (Z_1/Z_4) + arg (Z_2/Z_3) equals: