Home
Class 12
MATHS
If arg ""( z^(1//3)) = (1)/(2) arg"" ( ...

If ` arg ""( z^(1//3)) = (1)/(2) arg"" ( z^(2) + bar(z) z^(1//3))` then | z| =

A

4

B

3

C

2

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \arg(z^{1/3}) = \frac{1}{2} \arg(z^2 + \overline{z} z^{1/3}) \] 1. **Express the arguments**: Let \( z = re^{i\theta} \), where \( r = |z| \) and \( \theta = \arg(z) \). Then we have: \[ z^{1/3} = r^{1/3} e^{i\theta/3} \] and \[ z^2 = r^2 e^{2i\theta}, \quad \overline{z} = re^{-i\theta} \] Therefore, \[ \overline{z} z^{1/3} = r^{4/3} e^{i(\theta/3 - \theta)} = r^{4/3} e^{-2i\theta/3} \] 2. **Combine the terms**: Now, we need to evaluate \( z^2 + \overline{z} z^{1/3} \): \[ z^2 + \overline{z} z^{1/3} = r^2 e^{2i\theta} + r^{4/3} e^{-2i\theta/3} \] 3. **Find the argument of the sum**: The argument of a sum of complex numbers can be tricky, but we can express it as: \[ \arg(z^2 + \overline{z} z^{1/3}) = \arg(r^2 e^{2i\theta} + r^{4/3} e^{-2i\theta/3}) \] 4. **Set up the equation**: From the original equation, we have: \[ \frac{1}{3} \theta = \frac{1}{2} \arg(r^2 e^{2i\theta} + r^{4/3} e^{-2i\theta/3}) \] 5. **Simplify the equation**: Rearranging gives: \[ 2\theta = 3 \arg(r^2 e^{2i\theta} + r^{4/3} e^{-2i\theta/3}) \] 6. **Use properties of arguments**: For the argument to be real, the expression inside the argument must be real. Hence, we can set up the condition: \[ r^{2} + r^{4/3} \cos(2\theta - \frac{2\theta}{3}) = 0 \] 7. **Solve for \( r \)**: We simplify the equation: \[ r^{2} + r^{4/3} \cos(\frac{4\theta}{3}) = 0 \] This implies: \[ r^{2} = -r^{4/3} \cos(\frac{4\theta}{3}) \] Since \( r \) must be non-negative, we can conclude that \( \cos(\frac{4\theta}{3}) \) must be zero. 8. **Find the modulus**: The only way for this equation to hold true is if: \[ |z| = 1 \] Thus, the final answer is: \[ |z| = 1 \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (M.C.Q)|111 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If arg (z^(1//2))=(1)/(2)arg(z^(2)+barzz^(1//3)), find the value of |z|.

If arg(z^(3//8))=(1)/(2)arg(z^(2)+barz^(1//2)) , then which of the following is not possible ?

If arg (bar (z) _ (1)) = arg (z_ (2)) then

arg((z_(1))/(z_(2)))=arg(z_(1))-arg(z_(2))

If z_(1),z_(2) and z_(3) are three distinct complex numbers such that |z_(1)| = 1, |z_(2)| = 2, |z_(3)| = 4, arg(z_(2)) = arg(z_(1)) - pi, arg(z_(3)) = arg(z_(1)) + pi//2 , then z_(2)z_(3) is equal to

If arg ((z_(1) -(z)/(|z|))/((z)/(|z|))) = (pi)/(2) and |(z)/(|z|)-z_(1)|=3 , then |z_(1)| equals to

If |z_1| = |z_2| and "arg" (z_1) + "arg" (z_2) = pi//2, , then

Statement-1 : let z_(1) and z_(2) be two complex numbers such that arg (z_(1)) = pi/3 and arg(z_(2)) = pi/6 " then arg " (z_(1) z_(2)) = pi/2 and Statement -2 : arg(z_(1)z_(2)) = arg(z_(1)) + arg(z_(2)) + 2kpi, k in { 0,1,-1}