Home
Class 12
MATHS
sqrt(2i) equals...

`sqrt(2i)` equals

A

`1 + i`

B

`1 -i`

C

`- sqrt(2) i`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(\sqrt{2i}\), we can follow these steps: ### Step 1: Express \(2i\) in polar form First, we need to express \(2i\) in polar form. The complex number \(2i\) can be written as: \[ 2i = 0 + 2i \] The modulus \(r\) is given by: \[ r = |2i| = \sqrt{0^2 + 2^2} = \sqrt{4} = 2 \] The argument \(\theta\) is: \[ \theta = \tan^{-1}\left(\frac{2}{0}\right) = \frac{\pi}{2} \] Thus, in polar form, we have: \[ 2i = 2\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right) \] ### Step 2: Apply the square root in polar form To find the square root of a complex number in polar form, we use: \[ \sqrt{r} \left(\cos\frac{\theta}{2} + i\sin\frac{\theta}{2}\right) \] For \(2i\): - The modulus \(r = 2\) gives \(\sqrt{r} = \sqrt{2}\). - The argument \(\theta = \frac{\pi}{2}\) gives \(\frac{\theta}{2} = \frac{\pi}{4}\). Thus, we have: \[ \sqrt{2i} = \sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right) \] ### Step 3: Calculate \(\cos\frac{\pi}{4}\) and \(\sin\frac{\pi}{4}\) We know that: \[ \cos\frac{\pi}{4} = \sin\frac{\pi}{4} = \frac{1}{\sqrt{2}} \] So we can substitute these values: \[ \sqrt{2i} = \sqrt{2}\left(\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}\right) \] ### Step 4: Simplify the expression Now, simplifying this expression: \[ \sqrt{2i} = \sqrt{2} \cdot \frac{1}{\sqrt{2}} + i\sqrt{2} \cdot \frac{1}{\sqrt{2}} = 1 + i \] ### Conclusion Thus, we find that: \[ \sqrt{2i} = 1 + i \] ### Final Answer The correct option is \(A: 1 + i\). ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (M.C.Q)|111 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

(lim)_(x rarr2)((sqrt(1-cos{2(x-2)}))/(x-2))(1) does not exist (2) equals sqrt(2)(3) equals -sqrt(2)(4) equals (1)/(sqrt(2))

Principal argument of complex number z=(sqrt(3)+i)/(sqrt(3)-i) equal

(2sqrt(6))/(sqrt(2)+sqrt(3)+sqrt(5)) equals

What is (sqrt3+i)//(1+sqrt3i) equal to ?

What is sqrt(-10where I =sqrt(-1) equal to ?

If z=sqrt(2i), then z is equal to