Home
Class 12
MATHS
If arg(z) lt 0, then find arg(-z) -ar...

If ` arg(z) lt 0, ` then find ` arg(-z) -arg(z)`.

A

`pi`

B

`- pi`

C

`- (pi)/(2)`

D

`(pi)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (M.C.Q)|111 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

arg(bar(z))+arg(-z)={{:(pi",","if arg (z) "lt 0),(-pi",", "if arg (z) "gt 0):},"where" -pi lt arg(z) le pi . If arg(z) gt 0 , then arg (-z)-arg(z) is equal to

arg(bar(z))=-arg(z)

If arg (z)<0, then underset(pi)/(2)arg(-z)-arg(z) equals pi(b)-pi(d)-(pi)/(2)(d)(pi)/(2)

If z is purely imaginary and Im (z) lt 0 , then arg(i bar(z)) + arg(z) is equal to

If arg(z)<0 then arg(-z)-arg(z)=(1)pi(2)-pi(3)-(pi)/(2)(4)(pi)/(2)

arg(bar(z))+arg(-z)={{:(pi",","if arg (z) "lt 0),(-pi",", "if arg (z) "gt 0):},"where" -pi lt arg(z) le pi . If arga(4z_(1))-arg(5z_(2))=pi, " then " abs(z_(1)/z_(2)) is equal to