Home
Class 12
MATHS
If 2 | z - 1| = | z - 2| and if x^(2)...

If ` 2 | z - 1| = | z - 2| ` and if ` x^(2) + y^(2) = lambda x , "then " lambda = `

A

`1//3`

B

`2//3`

C

`4//3`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation involving the complex number \( z \): 1. **Given Equation**: \[ 2 | z - 1 | = | z - 2 | \] 2. **Let \( z = x + iy \)**: Here, \( x \) is the real part and \( y \) is the imaginary part of the complex number \( z \). 3. **Rewrite the Modulus**: \[ | z - 1 | = | (x + iy) - 1 | = | (x - 1) + iy | = \sqrt{(x - 1)^2 + y^2} \] \[ | z - 2 | = | (x + iy) - 2 | = | (x - 2) + iy | = \sqrt{(x - 2)^2 + y^2} \] 4. **Substituting into the Given Equation**: \[ 2 \sqrt{(x - 1)^2 + y^2} = \sqrt{(x - 2)^2 + y^2} \] 5. **Squaring Both Sides**: \[ 4((x - 1)^2 + y^2) = (x - 2)^2 + y^2 \] 6. **Expanding Both Sides**: - Left Side: \[ 4((x - 1)^2 + y^2) = 4(x^2 - 2x + 1 + y^2) = 4x^2 - 8x + 4 + 4y^2 \] - Right Side: \[ (x - 2)^2 + y^2 = (x^2 - 4x + 4 + y^2) = x^2 - 4x + 4 + y^2 \] 7. **Setting Both Sides Equal**: \[ 4x^2 - 8x + 4 + 4y^2 = x^2 - 4x + 4 + y^2 \] 8. **Rearranging the Equation**: \[ 4x^2 - x^2 + 4y^2 - y^2 - 8x + 4x + 4 - 4 = 0 \] \[ 3x^2 + 3y^2 - 4x = 0 \] 9. **Factoring Out Common Terms**: \[ 3(x^2 + y^2) = 4x \] 10. **Dividing by 3**: \[ x^2 + y^2 = \frac{4}{3}x \] 11. **Identifying \( \lambda \)**: We know from the problem statement that: \[ x^2 + y^2 = \lambda x \] Therefore, we can equate: \[ \lambda x = \frac{4}{3}x \] Thus, we find: \[ \lambda = \frac{4}{3} \] 12. **Final Answer**: The value of \( \lambda \) is: \[ \lambda = \frac{4}{3} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (M.C.Q)|111 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

Let lambda be an interger. If the shortest distance between the lines x - lambda = 2y - 1 = -2z and x = y + 2lambda= z-lambda is (sqrt7)/(2sqrt2) , then the value of |lambda| is _______ .

Investigate for what values of lambda, mu the simultaneous equations x + y + z = 6, x + 2 y + 3 z = 10 & x + 2 y + lambda z = mu have, An infinite number of solutions.

If the system of linear equations x+ y +z = 5 x+2y +2z = 6 x + 3y + lambdaz = mu, (lambda, mu in R) has infinitely many solutions, then the value of lambda + mu is