Home
Class 12
MATHS
If omega = ((z - i)/( 1 + iz))^(n) n in...

If ` omega = ((z - i)/( 1 + iz))^(n)` n integral, then ` omega` lies on the unit circle for

A

only even n

B

only odd n

C

only positive n

D

all n

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that the expression for \( \omega \) lies on the unit circle for any integer \( n \). The unit circle is defined as the set of complex numbers \( z \) such that \( |z| = 1 \). ### Step-by-Step Solution: 1. **Define \( \omega \)**: \[ \omega = \left( \frac{z - i}{1 + iz} \right)^n \] where \( z \) is a complex number. 2. **Substitute \( z \)**: Let \( z = x + iy \), where \( x \) and \( y \) are real numbers. Then, \[ \omega = \left( \frac{(x + iy) - i}{1 + i(x + iy)} \right)^n = \left( \frac{x + (y - 1)i}{1 + ix - y} \right)^n \] 3. **Simplify the expression**: We can rewrite \( \omega \) as follows: \[ \omega = \left( \frac{x + (y - 1)i}{1 - y + ix} \right)^n \] 4. **Calculate the modulus**: To show that \( \omega \) lies on the unit circle, we need to find \( |\omega| \): \[ |\omega| = \left| \frac{x + (y - 1)i}{1 - y + ix} \right|^n \] The modulus of a quotient is the quotient of the moduli: \[ |\omega| = \frac{|x + (y - 1)i|}{|1 - y + ix|}^n \] 5. **Find the moduli**: - For the numerator: \[ |x + (y - 1)i| = \sqrt{x^2 + (y - 1)^2} \] - For the denominator: \[ |1 - y + ix| = \sqrt{(1 - y)^2 + x^2} \] 6. **Set up the equality**: We need to show that: \[ \frac{\sqrt{x^2 + (y - 1)^2}}{\sqrt{(1 - y)^2 + x^2}} = 1 \] 7. **Square both sides**: Squaring both sides gives: \[ x^2 + (y - 1)^2 = (1 - y)^2 + x^2 \] 8. **Simplify**: The \( x^2 \) terms cancel out: \[ (y - 1)^2 = (1 - y)^2 \] This is true for all values of \( y \). 9. **Conclusion**: Since \( |\omega| = 1 \) for all \( n \), we conclude that \( \omega \) lies on the unit circle for any integer \( n \). ### Final Answer: Thus, \( \omega \) lies on the unit circle for all integral values of \( n \). ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (M.C.Q)|111 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

Let omega=[(z-i)/(1+iz)]^(n),n in1, then | omega|=1 all :

Let w=[(z-1)/(1+iz)]^(n),n in I, then |w|=1 for

If z=x+iy and omega=(1-iz)/(z-i) , then |omega|=1 implies that in the complex plane

If z ne 0 lies on the circle |z-1| = 1 and omega = 5//z , then omega lies on

If w=(z)/(z-(1)/(3)i) and |w|=1, then z lies on

If z lies on the circle I z 1=1, then 2/z lies on

If z=x+iy and w=(1-iz)/(z-i), then |w|=1 implies that in the complex plane (A)z lies on imaginary axis (B) z lies on real axis (C)z lies on unit circle (D) None of these