Home
Class 12
MATHS
If |z^2=1|=|z|^2+1 , then show that z li...

If `|z^2=1|=|z|^2+1` , then show that `z` lies on the imaginary axis.

A

real axis

B

imag. Axis

C

circle

D

ellipse

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (M.C.Q)|111 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If |z^(2)-1|=|z|^(2)+1, then z lies on

If |z^(2)-1|=|z|^(2)+1, then z lies on (a) a circle (b) the imaginary axis (c) the real axis (d) an ellipse

If |z^(2)-1|=|z|^(2)+1, then z lies on (a) a circle (b) the imaginary axis (c) the real axis (d) an ellipse

If |z^(2)-1|=|z|^(2)+1, then z lies on (a) a circle (b) the imaginary axis (c) the real axis (d) an ellipse

If |z^(2)-1|=|z|^(2)+1, then z lies on (a) a circle (b) the imaginary axis (c) the real axis (d) an ellipse

if |z^(2)-1|=|z|^(2)+1 then z lies on

If z^(2) + |z|^(2) = 0 , show that z is purely imaginary.

If z=x+iy and w=(1-iz)/(z-i), then |w|=1 implies that in the complex plane (A)z lies on imaginary axis (B) z lies on real axis (C)z lies on unit circle (D) None of these