Home
Class 12
MATHS
If z=r e^(itheta) , then prove that |e^(...

If `z=r e^(itheta)` , then prove that `|e^(i z)|=e^(-r s inthetadot)`

A

`e^(- r sin theta)`

B

`re ^(- r sin theta)`

C

` e^(- r cos theta)`

D

` re ^(- r cos theta)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (M.C.Q)|111 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If z=re^(i theta), then prove that |e^(iz)|=e^(-r sin theta)

If z= 5e^(itheta), then |e^(iz)| is equal to

If z=re^(i)theta then |e^(iz)| is equal to:

The value of |e^(z)|=

z_2/z_1 = (A) e^(itheta) cos theta (B) e^(itheta) cos 2theta (C) e^(-itheta) cos theta (D) e^(2itheta) cos 2theta

Read the following writeup carefully: In argand plane |z| represent the distance of a point z from the origin. In general |z_1-z_2| represent the distance between two points z_1 and z_2 . Also for a general moving point z in argand plane, if arg(z) =theta , then z=|z|e^(itheta) , where e^(itheta) = cos theta + i sintheta . Now answer the following question If |z-(3+2i)|=|z cos ((pi)/(4) - "arg" z)|, then locus of z is

In argand plane |z| represent the distance of a point z from the origin. In general |z_(1)-z_(2)| represent the distance between two points z_(1) and z_(2) . Also for a general moving point z in argand plane, if arg(z)=theta , then z=|z|e^(i theta) , where e^(i theta)=cos theta+i sin theta . If z_(1)=4e^(i pi//3) and z_(2)=2e^(i5pi//6) , then |z_(1)-z_(2)| equals