Home
Class 12
MATHS
If arg (z - 1)/( z + 1) = (pi)/( 4) the...

If arg ` (z - 1)/( z + 1) = (pi)/( 4)` then the locus of z is

A

straight line

B

circle

C

ellipse

D

hyperbola

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the locus of the complex number \( z \) such that \[ \arg \left( \frac{z - 1}{z + 1} \right) = \frac{\pi}{4}. \] ### Step-by-Step Solution: 1. **Express \( z \) in terms of \( x \) and \( y \)**: Let \( z = x + iy \), where \( x \) and \( y \) are real numbers. 2. **Substitute \( z \) into the argument expression**: We have: \[ \frac{z - 1}{z + 1} = \frac{(x - 1) + iy}{(x + 1) + iy}. \] 3. **Multiply numerator and denominator by the conjugate of the denominator**: The conjugate of the denominator is \( (x + 1) - iy \). Thus, \[ \frac{(x - 1) + iy}{(x + 1) + iy} \cdot \frac{(x + 1) - iy}{(x + 1) - iy} = \frac{((x - 1)(x + 1) + y^2) + i(y(x + 1) - y(x - 1))}{(x + 1)^2 + y^2}. \] 4. **Simplify the numerator**: The numerator becomes: \[ (x^2 - 1 + y^2) + i(2y). \] Therefore, \[ \frac{(x^2 - 1 + y^2) + i(2y)}{(x + 1)^2 + y^2}. \] 5. **Find the argument**: The argument of a complex number \( a + ib \) is given by \( \tan^{-1} \left( \frac{b}{a} \right) \). Thus, \[ \arg \left( \frac{z - 1}{z + 1} \right) = \tan^{-1} \left( \frac{2y}{x^2 - 1 + y^2} \right). \] 6. **Set the argument equal to \( \frac{\pi}{4} \)**: Since \( \tan \left( \frac{\pi}{4} \right) = 1 \), we have: \[ \frac{2y}{x^2 - 1 + y^2} = 1. \] 7. **Cross-multiply to eliminate the fraction**: This gives: \[ 2y = x^2 - 1 + y^2. \] 8. **Rearrange the equation**: Rearranging gives: \[ x^2 + y^2 - 2y - 1 = 0. \] 9. **Complete the square for \( y \)**: Completing the square for \( y \): \[ x^2 + (y - 1)^2 - 1 - 1 = 0 \implies x^2 + (y - 1)^2 = 2. \] 10. **Identify the locus**: This is the equation of a circle with center at \( (0, 1) \) and radius \( \sqrt{2} \). ### Conclusion: The locus of \( z \) is a circle centered at \( (0, 1) \) with a radius of \( \sqrt{2} \). ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (M.C.Q)|111 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If arg((z-1)/(z+1))=(pi)/(2) then the locus of z is

If arg((z-2)/(z+2))=(pi)/(4) then the locus of z is

If arg((z-1)/(z+1))=(pi)/(4) show that the locus of z in the complex plane is a circle.

Statement-1 : The locus of z , if arg((z-1)/(z+1)) = pi/2 is a circle. and Statement -2 : |(z-2)/(z+2)| = pi/2 , then the locus of z is a circle.

If z=x+iy and arg((z-2)/(z+2))=(pi)/(6), then find the locus of z.

If arg((z-3+4i)/(z+2-5i))=(5 pi)/(6), then locus of z represents .........

If arg((z_(1))/(z_(2)))=(pi)/(2), then find the value of |(z_(1)+z_(2))/(z_(1)-z_(2))|