Home
Class 12
MATHS
If (pi)/(2) lt theta lt (3 pi)/(2) , the...

If `(pi)/(2) lt theta lt (3 pi)/(2)` , the modulus and argument form of `(1 + cos 2 theta) + i sin 2 theta ` is

A

`- 2 cos theta [ cos ( pi + theta) + isin ( pi + theta) ]`

B

`2 cos theta [ cos theta +isin theta]`

C

` 2 cos theta [ cos theta + i sin (- theta) ]`

D

`- 2 cos theta {cos (pi - theta) + isin ( pi - theta)}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the modulus and argument form of the complex number \( z = (1 + \cos 2\theta) + i \sin 2\theta \) where \( \frac{\pi}{2} < \theta < \frac{3\pi}{2} \), we will follow these steps: ### Step 1: Identify the real and imaginary parts The complex number can be expressed as: \[ z = (1 + \cos 2\theta) + i \sin 2\theta \] Here, the real part \( x = 1 + \cos 2\theta \) and the imaginary part \( y = \sin 2\theta \). ### Step 2: Calculate the modulus of \( z \) The modulus of a complex number \( z = x + iy \) is given by: \[ |z| = \sqrt{x^2 + y^2} \] Substituting the values of \( x \) and \( y \): \[ |z| = \sqrt{(1 + \cos 2\theta)^2 + (\sin 2\theta)^2} \] ### Step 3: Expand the expression for modulus Now, we will expand \( (1 + \cos 2\theta)^2 \): \[ (1 + \cos 2\theta)^2 = 1 + 2\cos 2\theta + \cos^2 2\theta \] Using the identity \( \sin^2 2\theta + \cos^2 2\theta = 1 \), we can substitute \( \sin^2 2\theta \) for \( 1 - \cos^2 2\theta \): \[ |z| = \sqrt{(1 + 2\cos 2\theta + \cos^2 2\theta) + \sin^2 2\theta} \] \[ = \sqrt{1 + 2\cos 2\theta + 1} = \sqrt{2 + 2\cos 2\theta} \] \[ = \sqrt{2(1 + \cos 2\theta)} = \sqrt{2} \sqrt{1 + \cos 2\theta} \] ### Step 4: Simplify using the double angle identity Using the identity \( 1 + \cos 2\theta = 2\cos^2 \theta \): \[ |z| = \sqrt{2} \sqrt{2\cos^2 \theta} = 2|\cos \theta| \] Since \( \theta \) is in the interval \( \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \), \( \cos \theta < 0 \), thus: \[ |z| = -2\cos \theta \] ### Step 5: Calculate the argument of \( z \) The argument of \( z \) is given by: \[ \arg(z) = \tan^{-1}\left(\frac{y}{x}\right) = \tan^{-1}\left(\frac{\sin 2\theta}{1 + \cos 2\theta}\right) \] Using the double angle identity, \( \sin 2\theta = 2\sin \theta \cos \theta \) and \( 1 + \cos 2\theta = 2\cos^2 \theta \): \[ \arg(z) = \tan^{-1}\left(\frac{2\sin \theta \cos \theta}{2\cos^2 \theta}\right) = \tan^{-1}\left(\frac{\sin \theta}{\cos \theta}\right) = \tan^{-1}(\tan \theta) = \theta \] ### Step 6: Adjust the argument based on the quadrant Since \( \theta \) is in the interval \( \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \), the angle will be in the second or third quadrant. Therefore, we need to add \( \pi \) to the argument: \[ \arg(z) = \theta + \pi \] ### Final Result Combining the modulus and argument, we can express \( z \) in modulus-argument form: \[ z = -2\cos \theta \cdot e^{i(\theta + \pi)} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (M.C.Q)|111 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If (3pi)/(2) lt alpha lt 2 pi , find the modulus and argument of (1 - cos 2 alpha) + i sin 2 alpha .

If e^(-pi//2) lt theta lt pi //2 ,then =

If pi lt theta lt (3pi)/(2) , then find the value of sqrt((1-cos2theta)/(1+cos 2 theta)) .

If sin theta = (5)/(13), 0 lt theta lt (pi)/(2) then find the value of following. cos 2 theta

If sin theta = (5)/(13), 0 lt theta lt (pi)/(2) then find the value of following. cos 3 theta

If 0 lt theta lt (pi)/(4) , then what is sqrt(1-2 sin theta cos theta) equal to ?

If sin theta = (5)/(13), 0 lt theta lt (pi)/(2) then find the value of following. sin 2 theta

If (pi)/(2) lt theta lt (3pi)/(2) then sqrt(tan^(2)theta-sin^(2)theta) is equal to :