Home
Class 12
MATHS
Let A(0) A(1)A(2)A(3)A(4)A(5) be a regu...

Let `A_(0) A_(1)A_(2)A_(3)A_(4)A_(5)` be a regular hexagon inscribed in a circle of unit radius. Then the product of the lengths of the line segments `A_(0) A_(1), A_(0)A_(2) and A_(0) A_(4)` is

A

`(3)/(4)`

B

`3 sqrt(3)`

C

3

D

`( sqrt(3))/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the product of the lengths of the line segments \( A_0 A_1 \), \( A_0 A_2 \), and \( A_0 A_4 \) in a regular hexagon inscribed in a circle of unit radius, we can follow these steps: ### Step 1: Identify the vertices of the hexagon The vertices of the regular hexagon inscribed in a unit circle can be represented in the complex plane as: - \( A_0 = e^{i \cdot 0} = 1 \) - \( A_1 = e^{i \cdot \frac{\pi}{3}} = \frac{1}{2} + i \frac{\sqrt{3}}{2} \) - \( A_2 = e^{i \cdot \frac{2\pi}{3}} = -\frac{1}{2} + i \frac{\sqrt{3}}{2} \) - \( A_3 = e^{i \cdot \pi} = -1 \) - \( A_4 = e^{i \cdot \frac{4\pi}{3}} = -\frac{1}{2} - i \frac{\sqrt{3}}{2} \) - \( A_5 = e^{i \cdot \frac{5\pi}{3}} = \frac{1}{2} - i \frac{\sqrt{3}}{2} \) ### Step 2: Calculate the lengths of the segments 1. **Length of \( A_0 A_1 \)**: \[ |A_0 A_1| = |1 - \left(\frac{1}{2} + i \frac{\sqrt{3}}{2}\right)| = |1 - \frac{1}{2} - i \frac{\sqrt{3}}{2}| = |\frac{1}{2} - i \frac{\sqrt{3}}{2}| \] Using the formula for the modulus: \[ |A_0 A_1| = \sqrt{\left(\frac{1}{2}\right)^2 + \left(-\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = \sqrt{1} = 1 \] 2. **Length of \( A_0 A_2 \)**: \[ |A_0 A_2| = |1 - \left(-\frac{1}{2} + i \frac{\sqrt{3}}{2}\right)| = |1 + \frac{1}{2} - i \frac{\sqrt{3}}{2}| = |\frac{3}{2} - i \frac{\sqrt{3}}{2}| \] Using the modulus: \[ |A_0 A_2| = \sqrt{\left(\frac{3}{2}\right)^2 + \left(-\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{9}{4} + \frac{3}{4}} = \sqrt{3} = \sqrt{3} \] 3. **Length of \( A_0 A_4 \)**: \[ |A_0 A_4| = |1 - \left(-\frac{1}{2} - i \frac{\sqrt{3}}{2}\right)| = |1 + \frac{1}{2} + i \frac{\sqrt{3}}{2}| = |\frac{3}{2} + i \frac{\sqrt{3}}{2}| \] Using the modulus: \[ |A_0 A_4| = \sqrt{\left(\frac{3}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{9}{4} + \frac{3}{4}} = \sqrt{3} = \sqrt{3} \] ### Step 3: Calculate the product of the lengths Now we can find the product of the lengths: \[ |A_0 A_1| \cdot |A_0 A_2| \cdot |A_0 A_4| = 1 \cdot \sqrt{3} \cdot \sqrt{3} = 1 \cdot 3 = 3 \] ### Final Answer The product of the lengths of the segments \( A_0 A_1 \), \( A_0 A_2 \), and \( A_0 A_4 \) is \( 3 \). ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (M.C.Q)|111 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

Let A_(0)A_(1)A_(2)A_(3)A_(4)A_(5) be a regular hexagon inscribed in a circle of unit radius.Then the product of the lengths the line segments A_(0)A_(1),A_(0)A_(2) and A_(0)A_(4) is

A_(0),A_(1),A_(2),A_(3),A_(4),A_(5) be a regular hexagon inscribed in a circle of unit radius,then the product of (A_(0)A_(1)*A_(0)A_(2)*A_(0)A_(4) is equal to

Let A_(1)A_(2)A_(3)………………. A_(14) be a regular polygon with 14 sides inscribed in a circle of radius 7 cm. Then the value of (A_(1)A_(3))^(2) +(A_(1)A_(7))^(2) + (A_(3)A_(7))^(2) (in square cm) is……………..

Let A_(1),A_(2),A_(3),...A_(12) are vertices of a regular dodecagon. If radius of its circumcircle is 1, then the length A_(1)A_(3) is-

A regular pentagons is inscribed in a circle. If A_(1) and A_(2) represents the area of circle and that of regular pentagon respectively, then A_(1) : A_(2) is

Let A_(1),A_(2),A_(3),.........,A_(14) be a regular polygon with 14 sides inscribed in a circle of radius R. If (A_(1)A_(3))^(2)+(A_(1)A_(7))^(2)+(A_(3)A_(7))^(2)=KR^(2) , then K is equal to :

let A_(1),A_(2),A_(3),...A_(n) are the vertices of a regular n sided polygon inscribed in a circle of radius R.If (A_(1)A_(2))^(2)+(A_(1)A_(3))^(2)+...(A_(1)A_(n))^(2)=14R^(2) then find the number of sides in the polygon.

Five boys A_(1),A_(2),A_(3),A_(4),A_(5) , are sitting on the ladder in this way -A_(5) is above A_(1),A_(3) under A_(2),A_(2) , under A_(1) and A_(4) above A_(3) . Who sits at the bottom?