Home
Class 12
MATHS
If alpha, beta, gamma and a, b, c are c...

If ` alpha, beta, gamma` and a, b, c are complex numbers such that `(alpha)/( a) + (beta)/( b) + (gamma)/(c) = 1 + i and (a)/( alpha ) +(b)/( beta) + (c)/( gamma) 0 ` , then the value of `(alpha^(2))/( a^(2)) + (beta^(2))/(b^(2)) + (gamma^(2))/( c^(2))` is equal to

A

0

B

`-1`

C

2i

D

`-2i`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will follow a systematic approach. ### Given: 1. \(\frac{\alpha}{a} + \frac{\beta}{b} + \frac{\gamma}{c} = 1 + i\) 2. \(\frac{a}{\alpha} + \frac{b}{\beta} + \frac{c}{\gamma} = 0\) We need to find the value of: \[ \frac{\alpha^2}{a^2} + \frac{\beta^2}{b^2} + \frac{\gamma^2}{c^2} \] ### Step 1: Square the first equation Start by squaring the first equation: \[ \left(\frac{\alpha}{a} + \frac{\beta}{b} + \frac{\gamma}{c}\right)^2 = (1 + i)^2 \] Calculating the right-hand side: \[ (1 + i)^2 = 1^2 + 2(1)(i) + i^2 = 1 + 2i - 1 = 2i \] ### Step 2: Expand the left-hand side Now, expand the left-hand side: \[ \left(\frac{\alpha}{a} + \frac{\beta}{b} + \frac{\gamma}{c}\right)^2 = \frac{\alpha^2}{a^2} + \frac{\beta^2}{b^2} + \frac{\gamma^2}{c^2} + 2\left(\frac{\alpha \beta}{ab} + \frac{\beta \gamma}{bc} + \frac{\gamma \alpha}{ca}\right) \] ### Step 3: Set up the equation We now have: \[ \frac{\alpha^2}{a^2} + \frac{\beta^2}{b^2} + \frac{\gamma^2}{c^2} + 2\left(\frac{\alpha \beta}{ab} + \frac{\beta \gamma}{bc} + \frac{\gamma \alpha}{ca}\right) = 2i \] ### Step 4: Use the second equation From the second equation: \[ \frac{a}{\alpha} + \frac{b}{\beta} + \frac{c}{\gamma} = 0 \] This implies: \[ \frac{b}{\beta} + \frac{c}{\gamma} = -\frac{a}{\alpha} \] Multiplying through by \(\alpha \beta \gamma\) gives: \[ b \gamma + c \alpha = -a \beta \] Rearranging leads to: \[ a \beta + b \gamma + c \alpha = 0 \] ### Step 5: Substitute back into the equation Now, substituting this back into our earlier expression for \(t\): Let \(t = \frac{\alpha \beta}{ab} + \frac{\beta \gamma}{bc} + \frac{\gamma \alpha}{ca}\). Using the equation \(a \beta + b \gamma + c \alpha = 0\), we find that: \[ t = 0 \] ### Step 6: Final calculation Substituting \(t = 0\) back into our equation: \[ \frac{\alpha^2}{a^2} + \frac{\beta^2}{b^2} + \frac{\gamma^2}{c^2} + 2(0) = 2i \] Thus: \[ \frac{\alpha^2}{a^2} + \frac{\beta^2}{b^2} + \frac{\gamma^2}{c^2} = 2i \] ### Conclusion The value of \(\frac{\alpha^2}{a^2} + \frac{\beta^2}{b^2} + \frac{\gamma^2}{c^2}\) is: \[ \boxed{2i} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (M.C.Q)|111 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If alpha + beta + gamma=pi, then the value of sin ^(2) alpha + sin ^(2) beta - sin^(2) gamma is equal to

If alpha,beta,gamma are three distinct real numbers such than 0

If alpha,beta,gamma are the roots of x^(3)+ax^(2)+bx+c=0 then Sigma((alpha)/(beta)+(beta)/(alpha))=

If alpha, beta and gamma are the roots of the equation x^(3)-px^(2)+qx-r=0 , then the value of alpha^(2)beta+alpha^(2)gamma+beta^(2)alpha+beta^(2)gamma+gamma^(2)alpha+gamma^(2)beta is equal to

If [(0,2beta,gamma),(alpha,beta,-gamma),(alpha,-beta,gamma)] is orthogonal, then find the value of 2alpha^(2)+6beta^(2)+3gamma^(2).

If alpha,beta,gamma are the lengths of the altitudes of Delta ABC, then (cos A)/(alpha)+(cos B)/(beta)+(cos C)/(gamma)=