Home
Class 12
MATHS
Arg (z(1))/( z(2)) = Arg z(1) - Arg z(2...

Arg ` (z_(1))/( z_(2)) = Arg z_(1) - Arg z_(2)`
` | z| = | a + ib| = sqrt((a^(2) + b^(2)))`
` tan ^(-1) x - tan ^(-1) y = tan^(-1) ( x - y)/( 1 + xy)`
Let ` z_(1) = 10 + 6 i and z_(2) = 4 + 6 i `. If z is a complex number such that the argument of `( z - z_(1)) // ( z - z_(2)) is pi // 4` then prove that `| z - 7 - 9 i| = 3 sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that if the argument of \((z - z_1)/(z - z_2) = \pi/4\), then \(|z - 7 - 9i| = 3\sqrt{2}\). ### Step 1: Set up the complex numbers We have: - \(z_1 = 10 + 6i\) - \(z_2 = 4 + 6i\) ### Step 2: Express the condition on the argument Given: \[ \text{Arg}\left(\frac{z - z_1}{z - z_2}\right) = \frac{\pi}{4} \] This implies: \[ \frac{z - z_1}{z - z_2} = e^{i\frac{\pi}{4}} = \frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}} \] ### Step 3: Cross-multiply to eliminate the fraction Cross-multiplying gives us: \[ z - z_1 = \left(\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}\right)(z - z_2) \] ### Step 4: Substitute \(z_1\) and \(z_2\) Substituting \(z_1\) and \(z_2\): \[ z - (10 + 6i) = \left(\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}\right)(z - (4 + 6i)) \] ### Step 5: Distribute on the right-hand side Expanding the right-hand side: \[ z - 10 - 6i = \left(\frac{1}{\sqrt{2}}(z - 4) - \frac{1}{\sqrt{2}}(6) + i\left(\frac{1}{\sqrt{2}}(z - 4) - \frac{1}{\sqrt{2}}(6)\right)\right) \] ### Step 6: Rearranging the equation Rearranging gives: \[ z - 10 - 6i = \frac{1}{\sqrt{2}}z - \frac{4}{\sqrt{2}} - 6\frac{1}{\sqrt{2}} + i\left(\frac{1}{\sqrt{2}}z - \frac{4}{\sqrt{2}} - 6\frac{1}{\sqrt{2}}\right) \] ### Step 7: Collect like terms Collecting like terms, we can express \(z\) in terms of \(x\) and \(y\) (where \(z = x + yi\)): \[ (x - 10) + (y - 6)i = \left(\frac{1}{\sqrt{2}}(x - 4) - 6\frac{1}{\sqrt{2}}\right) + i\left(\frac{1}{\sqrt{2}}(y - 6) - \frac{4}{\sqrt{2}}\right) \] ### Step 8: Solve for \(z\) This leads to two equations: 1. \(x - 10 = \frac{1}{\sqrt{2}}(x - 4) - 6\frac{1}{\sqrt{2}}\) 2. \(y - 6 = \frac{1}{\sqrt{2}}(y - 6) - \frac{4}{\sqrt{2}}\) ### Step 9: Simplify and solve these equations Solving these equations will give us the coordinates of \(z\). ### Step 10: Find the modulus Once we have \(z\), we need to find \(|z - 7 - 9i|\): \[ |z - (7 + 9i)| = 3\sqrt{2} \] ### Conclusion Thus, we have shown that if the argument condition holds, then the modulus condition is satisfied.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (M.C.Q)|111 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If |(z_(1))/(z_(2))|=1 and arg(z_(1)z_(2))=0, then

Let z_(1)=6+i&z_(2)=4-3i Let z be a a complex number such that arg((z-z_(1))/(z-z_(2)))=(pi)/(2) then z satisfies

If arg (z_(1)z_(2))=0 and |z_(1)|=|z_(2)|=1 , then

If | z_ (1) + z_ (2) | = | z_ (1) -z_ (2) |, then arg z_ (1) -arg z_ (2) =