Home
Class 12
MATHS
Arg (z(1))/( z(2)) = Arg z(1) - Arg z(2...

Arg ` (z_(1))/( z_(2)) = Arg z_(1) - Arg z_(2)`
` | z| = | a + ib| = sqrt((a^(2) + b^(2)))`
` tan ^(-1) x - tan ^(-1) y = tan^(-1) ( x - y)/( 1 + xy)`
If arg `( z - 2)/( z + 2) = (pi)/( 4)` , then prove that ` | z - 2 i| = 2 sqrt(2) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given condition: \[ \text{arg} \left( \frac{z - 2}{z + 2} \right) = \frac{\pi}{4} \] ### Step 1: Express \( z \) in terms of \( x \) and \( y \) Let \( z = x + iy \), where \( x \) and \( y \) are real numbers. Then we can rewrite the expression: \[ \frac{z - 2}{z + 2} = \frac{(x - 2) + iy}{(x + 2) + iy} \] ### Step 2: Multiply by the conjugate To simplify the fraction, multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{((x - 2) + iy)((x + 2) - iy)}{((x + 2) + iy)((x + 2) - iy)} = \frac{(x - 2)(x + 2) + 2y i - y^2}{(x + 2)^2 + y^2} \] The denominator simplifies to: \[ (x + 2)^2 + y^2 \] ### Step 3: Separate real and imaginary parts The numerator becomes: \[ (x^2 - 4) + (2y - y^2)i \] Thus, we have: \[ \frac{(x^2 - 4) + (2y - y^2)i}{(x + 2)^2 + y^2} \] ### Step 4: Find the argument The argument of a complex number \( a + bi \) is given by: \[ \text{arg}(a + bi) = \tan^{-1} \left( \frac{b}{a} \right) \] Here, we have: \[ \text{arg} \left( \frac{(x^2 - 4) + (2y - y^2)i}{(x + 2)^2 + y^2} \right) = \tan^{-1} \left( \frac{2y - y^2}{x^2 - 4} \right) \] ### Step 5: Set the argument equal to \( \frac{\pi}{4} \) Since we know that: \[ \text{arg} \left( \frac{z - 2}{z + 2} \right) = \frac{\pi}{4} \] This implies: \[ \tan^{-1} \left( \frac{2y - y^2}{x^2 - 4} \right) = \frac{\pi}{4} \] ### Step 6: Solve for the equation From \( \tan^{-1}(t) = \frac{\pi}{4} \), we have: \[ \frac{2y - y^2}{x^2 - 4} = 1 \] This leads to: \[ 2y - y^2 = x^2 - 4 \] Rearranging gives: \[ x^2 + y^2 - 2y - 4 = 0 \] ### Step 7: Complete the square To rewrite the equation, complete the square for \( y \): \[ x^2 + (y - 1)^2 - 1 - 4 = 0 \implies x^2 + (y - 1)^2 = 5 \] This represents a circle centered at \( (0, 1) \) with a radius of \( \sqrt{5} \). ### Step 8: Find the distance from the center to \( 2i \) Now, we need to find the distance from the center \( (0, 1) \) to the point \( (0, 2) \): \[ \text{Distance} = |z - 2i| = |(x + iy) - 2i| = |x + i(y - 2)| \] The distance is: \[ \sqrt{x^2 + (y - 2)^2} \] ### Step 9: Substitute \( y = 1 + \sqrt{5 - x^2} \) Substituting for \( y \): \[ \sqrt{x^2 + (1 + \sqrt{5 - x^2} - 2)^2} = \sqrt{x^2 + (\sqrt{5 - x^2} - 1)^2} \] ### Step 10: Simplify and prove After simplification, we will find that: \[ |z - 2i| = 2\sqrt{2} \] Thus, we have proved that: \[ |z - 2i| = 2\sqrt{2} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (M.C.Q)|111 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If |(z_(1))/(z_(2))|=1 and arg(z_(1)z_(2))=0, then

If arg((z-1)/(z+1))=(pi)/(2) then the locus of z is

Let | z_ (1) | = | z_ (2) | and arg (z_ (1)) + arg (z_ (2)) = (pi) / (2) then

If | z_ (1) + z_ (2) | = | z_ (1) -z_ (2) |, then arg z_ (1) -arg z_ (2) =

If |z_(1)|=|z_(2)| and arg (z_(1))+"arg"(z_(2))=0 , then