Home
Class 12
MATHS
1 , omega , omega ^(2) are the cube ro...

` 1 , omega , omega ^(2)` are the cube roots of unity, then the value of `(1 + omega )^(3) - (1+ omega ^(2))^(3)` is

A

`2 omega`

B

2

C

`-2`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( (1 + \omega)^3 - (1 + \omega^2)^3 \), where \( 1, \omega, \omega^2 \) are the cube roots of unity. ### Step-by-Step Solution: 1. **Understanding Cube Roots of Unity**: The cube roots of unity are the solutions to the equation \( z^3 = 1 \). These roots are: \[ 1, \quad \omega = e^{2\pi i / 3}, \quad \omega^2 = e^{4\pi i / 3} \] where \( \omega^3 = 1 \) and \( 1 + \omega + \omega^2 = 0 \). 2. **Expressing \( 1 + \omega \) and \( 1 + \omega^2 \)**: From the identity \( 1 + \omega + \omega^2 = 0 \), we can express: \[ 1 + \omega = -\omega^2 \] and \[ 1 + \omega^2 = -\omega \] 3. **Calculating \( (1 + \omega)^3 \)**: Substitute \( 1 + \omega \): \[ (1 + \omega)^3 = (-\omega^2)^3 = -(\omega^2)^3 = -\omega^6 \] Since \( \omega^3 = 1 \), we have \( \omega^6 = (\omega^3)^2 = 1^2 = 1 \). Therefore: \[ (1 + \omega)^3 = -1 \] 4. **Calculating \( (1 + \omega^2)^3 \)**: Substitute \( 1 + \omega^2 \): \[ (1 + \omega^2)^3 = (-\omega)^3 = -\omega^3 \] Again, since \( \omega^3 = 1 \): \[ (1 + \omega^2)^3 = -1 \] 5. **Finding the Final Value**: Now we can substitute back into the original expression: \[ (1 + \omega)^3 - (1 + \omega^2)^3 = -1 - (-1) = -1 + 1 = 0 \] ### Conclusion: The value of \( (1 + \omega)^3 - (1 + \omega^2)^3 \) is \( 0 \).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If 1, omega, omega^2 be the cube roots of unity, then the value of (1 - omega + omega^2)^(5) + (1 + omega - omega^2)^5 is :

If 1, omega, omega^(2) are the cube roots of unity, then the value of (1+omega)(1+omega^(2))(1+omega^(4))(1+omega^(8)) is

if 1,omega, omega^2 are the cube roots of unity then the value of (2-omega)(2-omega^2)(2-omega^(10))(2-omega^(11))=

If 1,omega,omega^(2) are the cube roots of unity, then the roots of the equation (x-1)^(3)+8=0 are

ML KHANNA-COMPLEX NUMBERS -Problem Set (2) (M.C.Q)
  1. If omega is a cube root of unity, then find the value of the following...

    Text Solution

    |

  2. If 1, omega, omega^2 be the cube roots of unity, then the value of (1 ...

    Text Solution

    |

  3. 1 , omega , omega ^(2) are the cube roots of unity, then the value ...

    Text Solution

    |

  4. If omega complex cube root of unity, then ((1 + omega )/(omega ^(2)...

    Text Solution

    |

  5. If omega is complex cube root of unity, then the value of (1 + 2...

    Text Solution

    |

  6. If omega(ne 1) be a cube root of unity and (1+omega^(2))^(n)=(1+omega^...

    Text Solution

    |

  7. If omega imaginary cube root of unity , then sin {(omega ^(13) ...

    Text Solution

    |

  8. If sin ^(-1) {(1)/( 2i) ( z - 3)} be the angle of a triangle and if ...

    Text Solution

    |

  9. sin "" (pi)/( 900) { sum(r = 1)^(10) ( r - omega ) ( r - omega ^(2))} ...

    Text Solution

    |

  10. The cube roots of unity lie on a circle

    Text Solution

    |

  11. The cube roots of unity

    Text Solution

    |

  12. The equation | z - omega |^(2) pm | z - omega ^(2)|^(2) = lambda repr...

    Text Solution

    |

  13. If alpha and beta are the complex cube roots of unity, then alpha^...

    Text Solution

    |

  14. If omega(ne1) is a cube root of unity, then (1-omega+omega^(2))(1-omeg...

    Text Solution

    |

  15. If omega(ne 1) be a cube root of unity and (1+omega)^(7)=A+Bomega, the...

    Text Solution

    |

  16. If alpha is a complex number such that alpha^(2) + alpha + 1 =0, then ...

    Text Solution

    |

  17. If alpha and beta are the roots of the equation x^2-x+1=0 , then alpha...

    Text Solution

    |

  18. The expression x^(3p) + x^(3q - 1) + x^(3r - 2) , where p, q, r in N...

    Text Solution

    |

  19. If f(x)=g(x^(3))+xh(x^(3)) is divisiblel by x^(2)+x+1, then

    Text Solution

    |

  20. The value of sum (n = 1) ^(5) ( x ^(n) + (1)/( x^(n)))^(2) " where "...

    Text Solution

    |