Home
Class 12
MATHS
If omega is complex cube root of uni...

If ` omega ` is complex cube root of unity, then the value of `(1 + 2 omega )^(-1) + (2 + omega )^(-1) - (1 + omega ) ^(-1)` =

A

2

B

1

C

0

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ (1 + 2\omega)^{-1} + (2 + \omega)^{-1} - (1 + \omega)^{-1} \] where \(\omega\) is a complex cube root of unity. The cube roots of unity are given by: \[ \omega = e^{2\pi i / 3} = -\frac{1}{2} + \frac{\sqrt{3}}{2} i \] \[ \omega^2 = e^{-2\pi i / 3} = -\frac{1}{2} - \frac{\sqrt{3}}{2} i \] and we also know that \(1 + \omega + \omega^2 = 0\). ### Step 1: Calculate each term separately 1. **Calculate \((1 + 2\omega)^{-1}\)**: \[ (1 + 2\omega)^{-1} = \frac{1}{1 + 2\omega} \] 2. **Calculate \((2 + \omega)^{-1}\)**: \[ (2 + \omega)^{-1} = \frac{1}{2 + \omega} \] 3. **Calculate \((1 + \omega)^{-1}\)**: \[ (1 + \omega)^{-1} = \frac{1}{1 + \omega} \] ### Step 2: Combine the fractions Now we need to combine these fractions: \[ (1 + 2\omega)^{-1} + (2 + \omega)^{-1} - (1 + \omega)^{-1} \] We can find a common denominator for these fractions. The common denominator will be \((1 + 2\omega)(2 + \omega)(1 + \omega)\). ### Step 3: Write the expression with a common denominator The expression becomes: \[ \frac{(2 + \omega)(1 + \omega) + (1 + 2\omega)(1 + \omega) - (1 + 2\omega)(2 + \omega)}{(1 + 2\omega)(2 + \omega)(1 + \omega)} \] ### Step 4: Simplify the numerator Now we simplify the numerator: 1. Expand \((2 + \omega)(1 + \omega)\): \[ = 2 + 2\omega + \omega + \omega^2 = 2 + 3\omega + \omega^2 \] 2. Expand \((1 + 2\omega)(1 + \omega)\): \[ = 1 + \omega + 2\omega + 2\omega^2 = 1 + 3\omega + 2\omega^2 \] 3. Expand \((1 + 2\omega)(2 + \omega)\): \[ = 2 + \omega + 4\omega + 2\omega^2 = 2 + 5\omega + 2\omega^2 \] ### Step 5: Combine the results Putting it all together, we have: \[ (2 + 3\omega + \omega^2) + (1 + 3\omega + 2\omega^2) - (2 + 5\omega + 2\omega^2) \] Combine like terms: \[ = (2 + 1 - 2) + (3\omega + 3\omega - 5\omega) + (\omega^2 + 2\omega^2 - 2\omega^2) \] \[ = 1 + (6\omega - 5\omega) + (1\omega^2) \] \[ = 1 + \omega + \omega^2 \] ### Step 6: Use the property of cube roots of unity Since \(1 + \omega + \omega^2 = 0\), we have: \[ 1 + \omega + \omega^2 = 0 \] Thus, the entire expression evaluates to: \[ 0 \] ### Final Answer The value of the expression is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If omega is a complex cube root of unity, then what is the value of 1-(1)/((1+omega))-(1)/((1+omega^(2))) ?

If omega is a complex cube roots of unity, then find the value of the (1+ omega)(1+ omega^(2))(1+ omega^(4)) (1+ omega^(8)) … to 2n factors.

If omega be a complex cube root of unity then the value of (1)/(1+2 omega)-(1)/(1+omega)+(1)/(2+omega) is

If omega is a complex cube root of unity then the value of (1+omega)(1+omega^(2))(1+omega^(4)).......2n terms-

If 1, omega, omega^2 be the cube roots of unity, then the value of (1 - omega + omega^2)^(5) + (1 + omega - omega^2)^5 is :

If omega ne 1 is a cube root of unity, then 1, omega, omega^(2)

ML KHANNA-COMPLEX NUMBERS -Problem Set (2) (M.C.Q)
  1. 1 , omega , omega ^(2) are the cube roots of unity, then the value ...

    Text Solution

    |

  2. If omega complex cube root of unity, then ((1 + omega )/(omega ^(2)...

    Text Solution

    |

  3. If omega is complex cube root of unity, then the value of (1 + 2...

    Text Solution

    |

  4. If omega(ne 1) be a cube root of unity and (1+omega^(2))^(n)=(1+omega^...

    Text Solution

    |

  5. If omega imaginary cube root of unity , then sin {(omega ^(13) ...

    Text Solution

    |

  6. If sin ^(-1) {(1)/( 2i) ( z - 3)} be the angle of a triangle and if ...

    Text Solution

    |

  7. sin "" (pi)/( 900) { sum(r = 1)^(10) ( r - omega ) ( r - omega ^(2))} ...

    Text Solution

    |

  8. The cube roots of unity lie on a circle

    Text Solution

    |

  9. The cube roots of unity

    Text Solution

    |

  10. The equation | z - omega |^(2) pm | z - omega ^(2)|^(2) = lambda repr...

    Text Solution

    |

  11. If alpha and beta are the complex cube roots of unity, then alpha^...

    Text Solution

    |

  12. If omega(ne1) is a cube root of unity, then (1-omega+omega^(2))(1-omeg...

    Text Solution

    |

  13. If omega(ne 1) be a cube root of unity and (1+omega)^(7)=A+Bomega, the...

    Text Solution

    |

  14. If alpha is a complex number such that alpha^(2) + alpha + 1 =0, then ...

    Text Solution

    |

  15. If alpha and beta are the roots of the equation x^2-x+1=0 , then alpha...

    Text Solution

    |

  16. The expression x^(3p) + x^(3q - 1) + x^(3r - 2) , where p, q, r in N...

    Text Solution

    |

  17. If f(x)=g(x^(3))+xh(x^(3)) is divisiblel by x^(2)+x+1, then

    Text Solution

    |

  18. The value of sum (n = 1) ^(5) ( x ^(n) + (1)/( x^(n)))^(2) " where "...

    Text Solution

    |

  19. If t^(2) + t + 1 = 0 then, the value of ( t + (1)/( t))^(2) + ( t^(...

    Text Solution

    |

  20. If z^(2) + z + 1 = 0 where z is a complex number then the value of ...

    Text Solution

    |