Home
Class 12
MATHS
If omega imaginary cube root of uni...

If ` omega ` imaginary cube root of unity , then ` sin {(omega ^(13) + omega ^(20)) pi +(pi)/(4)}` is equal to

A

`- (sqrt(3))/(2)`

B

`-(1)/(sqrt(2))`

C

`(1)/( sqrt(2))`

D

`(sqrt(3))/( 2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( \sin \left( \omega^{13} + \omega^{20} \right) \pi + \frac{\pi}{4} \), where \( \omega \) is the imaginary cube root of unity. ### Step-by-step Solution: 1. **Understanding the cube roots of unity:** The cube roots of unity are the solutions to the equation \( x^3 = 1 \). They are given by: \[ 1, \quad \omega = e^{2\pi i / 3}, \quad \omega^2 = e^{4\pi i / 3} \] where \( \omega^3 = 1 \) and \( 1 + \omega + \omega^2 = 0 \). 2. **Finding powers of \( \omega \):** Since \( \omega^3 = 1 \), we can reduce higher powers of \( \omega \) modulo 3: - \( \omega^{13} = \omega^{13 \mod 3} = \omega^{1} = \omega \) - \( \omega^{20} = \omega^{20 \mod 3} = \omega^{2} \) 3. **Combining the results:** Now we can add these results: \[ \omega^{13} + \omega^{20} = \omega + \omega^2 \] From the property of cube roots of unity, we know: \[ \omega + \omega^2 = -1 \] 4. **Substituting back into the sine function:** We substitute this back into our sine function: \[ \sin \left( (-1) \pi + \frac{\pi}{4} \right) \] This simplifies to: \[ \sin \left( -\pi + \frac{\pi}{4} \right) = \sin \left( -\left( \pi - \frac{\pi}{4} \right) \right) = \sin \left( -\frac{3\pi}{4} \right) \] 5. **Using the sine function properties:** We know that: \[ \sin(-x) = -\sin(x) \] Therefore: \[ \sin \left( -\frac{3\pi}{4} \right) = -\sin \left( \frac{3\pi}{4} \right) \] 6. **Calculating \( \sin \left( \frac{3\pi}{4} \right) \):** The value of \( \sin \left( \frac{3\pi}{4} \right) \) is: \[ \sin \left( \frac{3\pi}{4} \right) = \frac{1}{\sqrt{2}} \] Thus: \[ \sin \left( -\frac{3\pi}{4} \right) = -\frac{1}{\sqrt{2}} \] ### Final Answer: Therefore, the value of \( \sin \left( \omega^{13} + \omega^{20} \right) \pi + \frac{\pi}{4} \) is: \[ \boxed{-\frac{1}{\sqrt{2}}} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If omega is a cube root of unity, then tan{(omega^(200)+(1)/(omega^(200)))pi+(pi)/(4)}=

If omega ne 1 is a cube root of unity, then (1)/(pi) sin^(-1) [(omega^(73) + omega^(83))+"tan"(5pi)/(4)] is equal to ___________

If omega is an imaginary cube root of unity, then (1+omega-omega^(2))^(7) equals

If omega is the imaginary cube root of unity, then what is (2-omega+2omega^(2))^(27) equal to ?

If omega ne 1 is a cube root of unity, then 1, omega, omega^(2)

If omega is a cube root of unity then find the value of sin((omega^(10)+omega^(23))-(pi)/(4))

If omega (ne 1) is a cube root of unity, then the value of tan[(omega^(2017) + omega^(2225)) pi - pi//3]

ML KHANNA-COMPLEX NUMBERS -Problem Set (2) (M.C.Q)
  1. If omega is complex cube root of unity, then the value of (1 + 2...

    Text Solution

    |

  2. If omega(ne 1) be a cube root of unity and (1+omega^(2))^(n)=(1+omega^...

    Text Solution

    |

  3. If omega imaginary cube root of unity , then sin {(omega ^(13) ...

    Text Solution

    |

  4. If sin ^(-1) {(1)/( 2i) ( z - 3)} be the angle of a triangle and if ...

    Text Solution

    |

  5. sin "" (pi)/( 900) { sum(r = 1)^(10) ( r - omega ) ( r - omega ^(2))} ...

    Text Solution

    |

  6. The cube roots of unity lie on a circle

    Text Solution

    |

  7. The cube roots of unity

    Text Solution

    |

  8. The equation | z - omega |^(2) pm | z - omega ^(2)|^(2) = lambda repr...

    Text Solution

    |

  9. If alpha and beta are the complex cube roots of unity, then alpha^...

    Text Solution

    |

  10. If omega(ne1) is a cube root of unity, then (1-omega+omega^(2))(1-omeg...

    Text Solution

    |

  11. If omega(ne 1) be a cube root of unity and (1+omega)^(7)=A+Bomega, the...

    Text Solution

    |

  12. If alpha is a complex number such that alpha^(2) + alpha + 1 =0, then ...

    Text Solution

    |

  13. If alpha and beta are the roots of the equation x^2-x+1=0 , then alpha...

    Text Solution

    |

  14. The expression x^(3p) + x^(3q - 1) + x^(3r - 2) , where p, q, r in N...

    Text Solution

    |

  15. If f(x)=g(x^(3))+xh(x^(3)) is divisiblel by x^(2)+x+1, then

    Text Solution

    |

  16. The value of sum (n = 1) ^(5) ( x ^(n) + (1)/( x^(n)))^(2) " where "...

    Text Solution

    |

  17. If t^(2) + t + 1 = 0 then, the value of ( t + (1)/( t))^(2) + ( t^(...

    Text Solution

    |

  18. If z^(2) + z + 1 = 0 where z is a complex number then the value of ...

    Text Solution

    |

  19. The common roots of the equation z^3+2z^2+2z+1=0&z^(1985)+z^(100)+1...

    Text Solution

    |

  20. If the cube roots of unity are 1,omega,omega^2, then the roots of the ...

    Text Solution

    |