Home
Class 12
MATHS
The equation | z - omega |^(2) pm | z - ...

The equation `| z - omega |^(2) pm | z - omega ^(2)|^(2) = lambda ` represents the equation of a circle with ` omega , omega ^(2)` as the extremities of a diameter, then ` lambda ` is

A

`sqrt(2)`

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equation and find the value of \( \lambda \) such that the equation represents a circle with \( \omega \) and \( \omega^2 \) as the extremities of a diameter. ### Step-by-Step Solution: 1. **Understanding the Given Equation**: The equation provided is: \[ |z - \omega|^2 \pm |z - \omega^2|^2 = \lambda \] Here, \( \omega \) and \( \omega^2 \) are the complex cube roots of unity, which can be expressed as: \[ \omega = -\frac{1}{2} + \frac{\sqrt{3}}{2}i \quad \text{and} \quad \omega^2 = -\frac{1}{2} - \frac{\sqrt{3}}{2}i \] 2. **Finding the Midpoint**: The midpoint of the segment joining \( \omega \) and \( \omega^2 \) is given by: \[ M = \frac{\omega + \omega^2}{2} \] Calculating this: \[ M = \frac{\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) + \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)}{2} = \frac{-1}{2} \] 3. **Finding the Radius**: The distance between \( \omega \) and \( \omega^2 \) is the diameter of the circle. The radius \( r \) is half of this distance: \[ d = |\omega - \omega^2| = |(-\frac{1}{2} + \frac{\sqrt{3}}{2}i) - (-\frac{1}{2} - \frac{\sqrt{3}}{2}i)| = |\sqrt{3}i| = \sqrt{3} \] Therefore, the radius \( r \) is: \[ r = \frac{d}{2} = \frac{\sqrt{3}}{2} \] 4. **Equation of the Circle**: The standard form of a circle with center \( M \) and radius \( r \) is: \[ |z - M|^2 = r^2 \] Substituting \( M = -\frac{1}{2} \) and \( r = \frac{\sqrt{3}}{2} \): \[ |z + \frac{1}{2}|^2 = \left(\frac{\sqrt{3}}{2}\right)^2 \] This simplifies to: \[ |z + \frac{1}{2}|^2 = \frac{3}{4} \] 5. **Relating to Given Equation**: The equation \( |z - \omega|^2 + |z - \omega^2|^2 = \lambda \) can be manipulated to find \( \lambda \). Since we know the radius and the center, we can equate: \[ \lambda = \frac{3}{4} \] ### Conclusion: Thus, the value of \( \lambda \) is: \[ \lambda = \frac{3}{4} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If |z + omega|^(2) = |z|^(2)+|omega|^(2) , where z and omega are complex numbers , then

If omega is an imaginary cube root of unity then the equation whose roots are 2 omega+3 omega^(2) and 2 omega^(2)+3 omega is

If omega is an imaginary cube root of unity.Then the equation whose roots are 2 omega+3 omega^(2),2 omega^(2)+3 omega, is

(x omega ^ (2) + y omega + z) / (x omega + y + omega ^ (2)) = ((x omega + y + z omega ^ (2)) / (x omega ^ (2) + and omega + z)) ^ (2)

If z_1 + z_2 + z_3 = A, z_1 + z_(2)omega+ z_(3)omega^(2)= B, z_1 + z_(2) omega^(2) + z_(3) omega=C where 1, omega, omega^2 are the cube roots of unity, then

If z ne 0 lies on the circle |z-1| = 1 and omega = 5//z , then omega lies on

If omega is a complex cube root of unity,then the equation |z-omega|^(2)+|z-omega^(2)|^(2)=lambda will represent a circle,if

ML KHANNA-COMPLEX NUMBERS -Problem Set (2) (M.C.Q)
  1. The cube roots of unity lie on a circle

    Text Solution

    |

  2. The cube roots of unity

    Text Solution

    |

  3. The equation | z - omega |^(2) pm | z - omega ^(2)|^(2) = lambda repr...

    Text Solution

    |

  4. If alpha and beta are the complex cube roots of unity, then alpha^...

    Text Solution

    |

  5. If omega(ne1) is a cube root of unity, then (1-omega+omega^(2))(1-omeg...

    Text Solution

    |

  6. If omega(ne 1) be a cube root of unity and (1+omega)^(7)=A+Bomega, the...

    Text Solution

    |

  7. If alpha is a complex number such that alpha^(2) + alpha + 1 =0, then ...

    Text Solution

    |

  8. If alpha and beta are the roots of the equation x^2-x+1=0 , then alpha...

    Text Solution

    |

  9. The expression x^(3p) + x^(3q - 1) + x^(3r - 2) , where p, q, r in N...

    Text Solution

    |

  10. If f(x)=g(x^(3))+xh(x^(3)) is divisiblel by x^(2)+x+1, then

    Text Solution

    |

  11. The value of sum (n = 1) ^(5) ( x ^(n) + (1)/( x^(n)))^(2) " where "...

    Text Solution

    |

  12. If t^(2) + t + 1 = 0 then, the value of ( t + (1)/( t))^(2) + ( t^(...

    Text Solution

    |

  13. If z^(2) + z + 1 = 0 where z is a complex number then the value of ...

    Text Solution

    |

  14. The common roots of the equation z^3+2z^2+2z+1=0&z^(1985)+z^(100)+1...

    Text Solution

    |

  15. If the cube roots of unity are 1,omega,omega^2, then the roots of the ...

    Text Solution

    |

  16. (( - 1 + sqrt""(-3))/(2))^(100) + ((- 1 - sqrt""(-3))/( 2))^(100) equ...

    Text Solution

    |

  17. ( i + sqrt(3) )^(100) + (i - sqrt(3))^(100) + 2 ^(100) =

    Text Solution

    |

  18. What is the value of : ((-1+isqrt(3))/(2))^(3n) + (( -1-isqrt(3))/(2...

    Text Solution

    |

  19. If i=sqrt(-1), then 4+5(-1/2+(isqrt(3))/(2))^(334)+3(1/2+(isqrt(3))/...

    Text Solution

    |

  20. If 1;w;w^2 are cube root of unity and n is a positive integer;then 1+w...

    Text Solution

    |