Home
Class 12
MATHS
If alpha and beta are the complex cube...

If ` alpha and beta ` are the complex cube roots of unity, then ` alpha^(4) + beta^(4) + alpha ^(-1) beta^(-1)`

A

1

B

2

C

3

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( \alpha^4 + \beta^4 + \alpha^{-1} \beta^{-1} \), where \( \alpha \) and \( \beta \) are the complex cube roots of unity. ### Step 1: Identify the cube roots of unity The complex cube roots of unity are given by: \[ 1, \omega, \omega^2 \] where \( \omega = e^{2\pi i / 3} = -\frac{1}{2} + \frac{\sqrt{3}}{2} i \) and \( \omega^2 = e^{-2\pi i / 3} = -\frac{1}{2} - \frac{\sqrt{3}}{2} i \). ### Step 2: Assign values to \( \alpha \) and \( \beta \) Let \( \alpha = \omega \) and \( \beta = \omega^2 \). ### Step 3: Calculate \( \alpha^4 \) and \( \beta^4 \) Using the property of powers of roots of unity, we know: \[ \omega^3 = 1 \quad \text{and} \quad \omega^4 = \omega \quad \text{and} \quad (\omega^2)^4 = \omega^2 \] Thus, we have: \[ \alpha^4 = \omega^4 = \omega \] \[ \beta^4 = (\omega^2)^4 = \omega^2 \] ### Step 4: Calculate \( \alpha^{-1} \) and \( \beta^{-1} \) The inverses of \( \alpha \) and \( \beta \) are: \[ \alpha^{-1} = \frac{1}{\omega} = \omega^2 \quad \text{and} \quad \beta^{-1} = \frac{1}{\omega^2} = \omega \] Thus, \[ \alpha^{-1} \beta^{-1} = \omega^2 \cdot \omega = \omega^3 = 1 \] ### Step 5: Combine all parts to find the total Now we substitute back into the original expression: \[ \alpha^4 + \beta^4 + \alpha^{-1} \beta^{-1} = \omega + \omega^2 + 1 \] ### Step 6: Use the property of cube roots of unity From the property of the cube roots of unity, we know: \[ 1 + \omega + \omega^2 = 0 \] Thus, \[ \omega + \omega^2 + 1 = 0 \] ### Final Result The value of \( \alpha^4 + \beta^4 + \alpha^{-1} \beta^{-1} \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta are the complex cube roots of unity then alpha^(100)+beta^(100)+(1)/(alpha^(100)xx beta^(100))=

if alpha and beta are imaginary cube root of unity then prove (alpha)^(4)+(beta)^(4)+(alpha)^(-1)*(beta)^(-1)=0

(i) If alpha,beta be the imaginary cube root of unity, then show that alpha^(4)+beta^(4)+alpha^(-1)beta^(-1)=0

If alpha and beta are the complex cube roots of unity, then what is the vlaue of (1+alpha)(1+beta)(1+alpha^(2))(1+beta^(2)) ?

If a and b are imaginary cube roots of unity, then alpha^(n)+beta^(n) is equal to

If alpha,beta are the roots of 1+x+x^(2)=0 then the value of alpha^(4)+beta^(4)+alpha^(-4)beta^(-4) =

ML KHANNA-COMPLEX NUMBERS -Problem Set (2) (M.C.Q)
  1. The cube roots of unity

    Text Solution

    |

  2. The equation | z - omega |^(2) pm | z - omega ^(2)|^(2) = lambda repr...

    Text Solution

    |

  3. If alpha and beta are the complex cube roots of unity, then alpha^...

    Text Solution

    |

  4. If omega(ne1) is a cube root of unity, then (1-omega+omega^(2))(1-omeg...

    Text Solution

    |

  5. If omega(ne 1) be a cube root of unity and (1+omega)^(7)=A+Bomega, the...

    Text Solution

    |

  6. If alpha is a complex number such that alpha^(2) + alpha + 1 =0, then ...

    Text Solution

    |

  7. If alpha and beta are the roots of the equation x^2-x+1=0 , then alpha...

    Text Solution

    |

  8. The expression x^(3p) + x^(3q - 1) + x^(3r - 2) , where p, q, r in N...

    Text Solution

    |

  9. If f(x)=g(x^(3))+xh(x^(3)) is divisiblel by x^(2)+x+1, then

    Text Solution

    |

  10. The value of sum (n = 1) ^(5) ( x ^(n) + (1)/( x^(n)))^(2) " where "...

    Text Solution

    |

  11. If t^(2) + t + 1 = 0 then, the value of ( t + (1)/( t))^(2) + ( t^(...

    Text Solution

    |

  12. If z^(2) + z + 1 = 0 where z is a complex number then the value of ...

    Text Solution

    |

  13. The common roots of the equation z^3+2z^2+2z+1=0&z^(1985)+z^(100)+1...

    Text Solution

    |

  14. If the cube roots of unity are 1,omega,omega^2, then the roots of the ...

    Text Solution

    |

  15. (( - 1 + sqrt""(-3))/(2))^(100) + ((- 1 - sqrt""(-3))/( 2))^(100) equ...

    Text Solution

    |

  16. ( i + sqrt(3) )^(100) + (i - sqrt(3))^(100) + 2 ^(100) =

    Text Solution

    |

  17. What is the value of : ((-1+isqrt(3))/(2))^(3n) + (( -1-isqrt(3))/(2...

    Text Solution

    |

  18. If i=sqrt(-1), then 4+5(-1/2+(isqrt(3))/(2))^(334)+3(1/2+(isqrt(3))/...

    Text Solution

    |

  19. If 1;w;w^2 are cube root of unity and n is a positive integer;then 1+w...

    Text Solution

    |

  20. If n is a multiple of 3, then 1 + omega ^(n) + omega ^(2n) =

    Text Solution

    |