Home
Class 12
MATHS
The value of sum (n = 1) ^(5) ( x ^(n)...

The value of ` sum _(n = 1) ^(5) ( x ^(n) + (1)/( x^(n)))^(2) " where " x^(2) - x + 1 = 0 ` is

A

0

B

10

C

12

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \sum_{n=1}^{5} \left( x^n + \frac{1}{x^n} \right)^2 \] given that \( x^2 - x + 1 = 0 \). ### Step 1: Find the roots of the equation \( x^2 - x + 1 = 0 \) Using the quadratic formula, \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ x = \frac{1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{1 \pm \sqrt{-3}}{2} = \frac{1 \pm \sqrt{3}i}{2} \] Thus, the roots are: \[ x_1 = \frac{1 + \sqrt{3}i}{2}, \quad x_2 = \frac{1 - \sqrt{3}i}{2} \] ### Step 2: Choose one root and express it in exponential form Let's choose \( x_1 = \frac{1 + \sqrt{3}i}{2} \). We can express this in polar form: \[ x_1 = \cos\left(\frac{\pi}{3}\right) + i \sin\left(\frac{\pi}{3}\right) = e^{i\frac{\pi}{3}} \] ### Step 3: Calculate \( x^n + \frac{1}{x^n} \) Using \( x = e^{i\frac{\pi}{3}} \): \[ x^n = e^{i\frac{n\pi}{3}}, \quad \frac{1}{x^n} = e^{-i\frac{n\pi}{3}} \] Thus, \[ x^n + \frac{1}{x^n} = e^{i\frac{n\pi}{3}} + e^{-i\frac{n\pi}{3}} = 2\cos\left(\frac{n\pi}{3}\right) \] ### Step 4: Substitute into the summation Now we substitute this back into the summation: \[ \sum_{n=1}^{5} \left( x^n + \frac{1}{x^n} \right)^2 = \sum_{n=1}^{5} \left( 2\cos\left(\frac{n\pi}{3}\right) \right)^2 = 4\sum_{n=1}^{5} \cos^2\left(\frac{n\pi}{3}\right) \] ### Step 5: Calculate \( \cos^2\left(\frac{n\pi}{3}\right) \) for \( n = 1, 2, 3, 4, 5 \) Calculating the values: - For \( n=1 \): \( \cos^2\left(\frac{\pi}{3}\right) = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \) - For \( n=2 \): \( \cos^2\left(\frac{2\pi}{3}\right) = \left(-\frac{1}{2}\right)^2 = \frac{1}{4} \) - For \( n=3 \): \( \cos^2\left(\pi\right) = (-1)^2 = 1 \) - For \( n=4 \): \( \cos^2\left(\frac{4\pi}{3}\right) = \left(-\frac{1}{2}\right)^2 = \frac{1}{4} \) - For \( n=5 \): \( \cos^2\left(\frac{5\pi}{3}\right) = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \) ### Step 6: Sum the values Now we sum these values: \[ \sum_{n=1}^{5} \cos^2\left(\frac{n\pi}{3}\right) = \frac{1}{4} + \frac{1}{4} + 1 + \frac{1}{4} + \frac{1}{4} = \frac{5}{4} + 1 = \frac{9}{4} \] ### Step 7: Multiply by 4 Finally, we multiply by 4: \[ 4 \sum_{n=1}^{5} \cos^2\left(\frac{n\pi}{3}\right) = 4 \cdot \frac{9}{4} = 9 \] ### Final Answer Thus, the value of the summation is: \[ \boxed{9} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If x^(2)-x+1=0 then the value of sum_(n=1)^(5)[x^(n)+(1)/(x^(n))]^(2) is:

If x^(2) - x+ 1 =0, sum_(n=1)^(5) (x^(n) +(1)/(x^(n))) equals -

The value of lim_(x rarr1)(x^(n)+x^(n-1)+x^(n-2)+...x^(2)+x-n)/(x-1)

The value of ""(n)C_(1). X(1 - x )^(n-1) + 2 . ""^(n)C_(2) x^(2) (1 - x)^(n-2) + 3. ""^(n)C_(3) x^(3) (1 - x)^(n-3) + ….+ n ""^(n)C_(n) x^(n) , n in N is

If 1+x^(2)=sqrt(3)x, then sum_(n=1)^(24)(x^(n)-(1)/(x^(n))) is equal to

If a=(e^(2 pi i))/(7) and f(x)=A_(0)+sum_(k=1)^(20)A_(k)x^(k) then the value of sum_(r=0)^(6)f(a^(r)x)=n(A_(0)+A_(n)x^(n)+A_(2n)x^(2n)), then the value of n is

For x in Rwith|x|<1, the value of sum_(n=0)^(oo)(1+n)x^(n) is

The value of int _(0)^(2)f(x) d x , where f(x)={(0",where" x = (n)/(n+1)", n=1,2,3" ...) ,(1"," "elsewhere"):}3 is equal to

The value of lim_(x rarr0)[(1-2x)^(n)sum_(r=0)^(n)-r((x+x^(2))/(1-2x))^(r)]^((1)/(x)) is :

lim_(x rarr 2)sum_(n=1)^9x/(n(n+1)x^2+2(2n+1)x+4)

ML KHANNA-COMPLEX NUMBERS -Problem Set (2) (M.C.Q)
  1. The expression x^(3p) + x^(3q - 1) + x^(3r - 2) , where p, q, r in N...

    Text Solution

    |

  2. If f(x)=g(x^(3))+xh(x^(3)) is divisiblel by x^(2)+x+1, then

    Text Solution

    |

  3. The value of sum (n = 1) ^(5) ( x ^(n) + (1)/( x^(n)))^(2) " where "...

    Text Solution

    |

  4. If t^(2) + t + 1 = 0 then, the value of ( t + (1)/( t))^(2) + ( t^(...

    Text Solution

    |

  5. If z^(2) + z + 1 = 0 where z is a complex number then the value of ...

    Text Solution

    |

  6. The common roots of the equation z^3+2z^2+2z+1=0&z^(1985)+z^(100)+1...

    Text Solution

    |

  7. If the cube roots of unity are 1,omega,omega^2, then the roots of the ...

    Text Solution

    |

  8. (( - 1 + sqrt""(-3))/(2))^(100) + ((- 1 - sqrt""(-3))/( 2))^(100) equ...

    Text Solution

    |

  9. ( i + sqrt(3) )^(100) + (i - sqrt(3))^(100) + 2 ^(100) =

    Text Solution

    |

  10. What is the value of : ((-1+isqrt(3))/(2))^(3n) + (( -1-isqrt(3))/(2...

    Text Solution

    |

  11. If i=sqrt(-1), then 4+5(-1/2+(isqrt(3))/(2))^(334)+3(1/2+(isqrt(3))/...

    Text Solution

    |

  12. If 1;w;w^2 are cube root of unity and n is a positive integer;then 1+w...

    Text Solution

    |

  13. If n is a multiple of 3, then 1 + omega ^(n) + omega ^(2n) =

    Text Solution

    |

  14. If alpha , beta are the roots of x^(2) - 2 x + 4 = 0 " then " (alph...

    Text Solution

    |

  15. If g(x) and h(x) are two polynomials such that the polynomials P(x)=g(...

    Text Solution

    |

  16. If alpha , beta are complex cube roots of unity and x = a + b, y = ...

    Text Solution

    |

  17. If a+b+c=0 and omega,omega^2 are imaginary cube roots of unity, then (...

    Text Solution

    |

  18. If omega is a cube root of unity but not equal to 1, then minimum valu...

    Text Solution

    |

  19. If x=a+b,y=aomega+bomega^2 nd z=omega^2+bomega, prove that x^3+y^3+z^3...

    Text Solution

    |

  20. If x=a+b,y=aomega+bomega^2 nd z=omega^2+bomega, prove that x^3+y^3+z^3...

    Text Solution

    |