Home
Class 12
MATHS
If t^(2) + t + 1 = 0 then, the value o...

If ` t^(2) + t + 1 = 0` then, the value of `( t + (1)/( t))^(2) + ( t^(2) + (1)/( t^(2)))^(2) + . . . + (t^(27) + (1)/(t^(27)))^(2)` is

A

27

B

72

C

45

D

54

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( t^2 + t + 1 = 0 \) and find the value of \[ (t + \frac{1}{t})^2 + (t^2 + \frac{1}{t^2})^2 + \ldots + (t^{27} + \frac{1}{t^{27}})^2, \] we can follow these steps: ### Step 1: Solve the quadratic equation The roots of the equation \( t^2 + t + 1 = 0 \) can be found using the quadratic formula: \[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{-1 \pm \sqrt{-3}}{2} = \frac{-1 \pm i\sqrt{3}}{2}. \] Let \( \omega = \frac{-1 + i\sqrt{3}}{2} \) and \( \omega^2 = \frac{-1 - i\sqrt{3}}{2} \). These are the two non-real cube roots of unity. ### Step 2: Properties of \( \omega \) Since \( \omega^3 = 1 \), we know that: \[ \omega^0 = 1, \quad \omega^1 = \omega, \quad \omega^2 = \omega^2, \quad \omega^3 = 1, \quad \omega^4 = \omega, \ldots \] ### Step 3: Calculate \( t + \frac{1}{t} \) We can calculate \( t + \frac{1}{t} \): \[ t + \frac{1}{t} = \omega + \frac{1}{\omega} = \omega + \omega^2 = -1. \] ### Step 4: Calculate \( t^n + \frac{1}{t^n} \) Using the properties of \( \omega \): \[ t^n + \frac{1}{t^n} = \omega^n + \omega^{-n}. \] This expression will yield: - If \( n \equiv 0 \mod 3 \), then \( t^n + \frac{1}{t^n} = 2 \). - If \( n \equiv 1 \mod 3 \), then \( t^n + \frac{1}{t^n} = -1 \). - If \( n \equiv 2 \mod 3 \), then \( t^n + \frac{1}{t^n} = -1 \). ### Step 5: Calculate the squares Now we need to compute: \[ (t^n + \frac{1}{t^n})^2. \] This gives us: - If \( n \equiv 0 \mod 3 \), then \( (t^n + \frac{1}{t^n})^2 = 4 \). - If \( n \equiv 1 \mod 3 \) or \( n \equiv 2 \mod 3 \), then \( (t^n + \frac{1}{t^n})^2 = 1 \). ### Step 6: Count occurrences From \( n = 0 \) to \( n = 27 \): - The values of \( n \equiv 0 \mod 3 \): \( 0, 3, 6, 9, 12, 15, 18, 21, 24, 27 \) (10 terms). - The values of \( n \equiv 1 \mod 3 \): \( 1, 4, 7, 10, 13, 16, 19, 22, 25 \) (9 terms). - The values of \( n \equiv 2 \mod 3 \): \( 2, 5, 8, 11, 14, 17, 20, 23, 26 \) (9 terms). ### Step 7: Calculate the total Now we can calculate the total: \[ \text{Total} = 10 \cdot 4 + 9 \cdot 1 + 9 \cdot 1 = 40 + 9 + 9 = 58. \] ### Final Answer Thus, the value of \[ (t + \frac{1}{t})^2 + (t^2 + \frac{1}{t^2})^2 + \ldots + (t^{27} + \frac{1}{t^{27}})^2 = 58. \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (1) (True and False)|5 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

Find the value of ln(int_(0)^(1)e^(t^(2)+t)(2t^(2)+t+1)dt)

If t-(1)/(t)=9 ,find the value of t^(2)+(1)/(t^(2)) .

The locus of the point x=(t^(2)-1)/(t^(2)+1),y=(2t)/(t^(2)+1)

sinx = (2t)/(1+t^(2)), tan y = (2t)/(1-t^(2))

ML KHANNA-COMPLEX NUMBERS -Problem Set (2) (M.C.Q)
  1. If f(x)=g(x^(3))+xh(x^(3)) is divisiblel by x^(2)+x+1, then

    Text Solution

    |

  2. The value of sum (n = 1) ^(5) ( x ^(n) + (1)/( x^(n)))^(2) " where "...

    Text Solution

    |

  3. If t^(2) + t + 1 = 0 then, the value of ( t + (1)/( t))^(2) + ( t^(...

    Text Solution

    |

  4. If z^(2) + z + 1 = 0 where z is a complex number then the value of ...

    Text Solution

    |

  5. The common roots of the equation z^3+2z^2+2z+1=0&z^(1985)+z^(100)+1...

    Text Solution

    |

  6. If the cube roots of unity are 1,omega,omega^2, then the roots of the ...

    Text Solution

    |

  7. (( - 1 + sqrt""(-3))/(2))^(100) + ((- 1 - sqrt""(-3))/( 2))^(100) equ...

    Text Solution

    |

  8. ( i + sqrt(3) )^(100) + (i - sqrt(3))^(100) + 2 ^(100) =

    Text Solution

    |

  9. What is the value of : ((-1+isqrt(3))/(2))^(3n) + (( -1-isqrt(3))/(2...

    Text Solution

    |

  10. If i=sqrt(-1), then 4+5(-1/2+(isqrt(3))/(2))^(334)+3(1/2+(isqrt(3))/...

    Text Solution

    |

  11. If 1;w;w^2 are cube root of unity and n is a positive integer;then 1+w...

    Text Solution

    |

  12. If n is a multiple of 3, then 1 + omega ^(n) + omega ^(2n) =

    Text Solution

    |

  13. If alpha , beta are the roots of x^(2) - 2 x + 4 = 0 " then " (alph...

    Text Solution

    |

  14. If g(x) and h(x) are two polynomials such that the polynomials P(x)=g(...

    Text Solution

    |

  15. If alpha , beta are complex cube roots of unity and x = a + b, y = ...

    Text Solution

    |

  16. If a+b+c=0 and omega,omega^2 are imaginary cube roots of unity, then (...

    Text Solution

    |

  17. If omega is a cube root of unity but not equal to 1, then minimum valu...

    Text Solution

    |

  18. If x=a+b,y=aomega+bomega^2 nd z=omega^2+bomega, prove that x^3+y^3+z^3...

    Text Solution

    |

  19. If x=a+b,y=aomega+bomega^2 nd z=omega^2+bomega, prove that x^3+y^3+z^3...

    Text Solution

    |

  20. If omega pm 1 is a cube root of unity, the value of (a + b omega + c o...

    Text Solution

    |